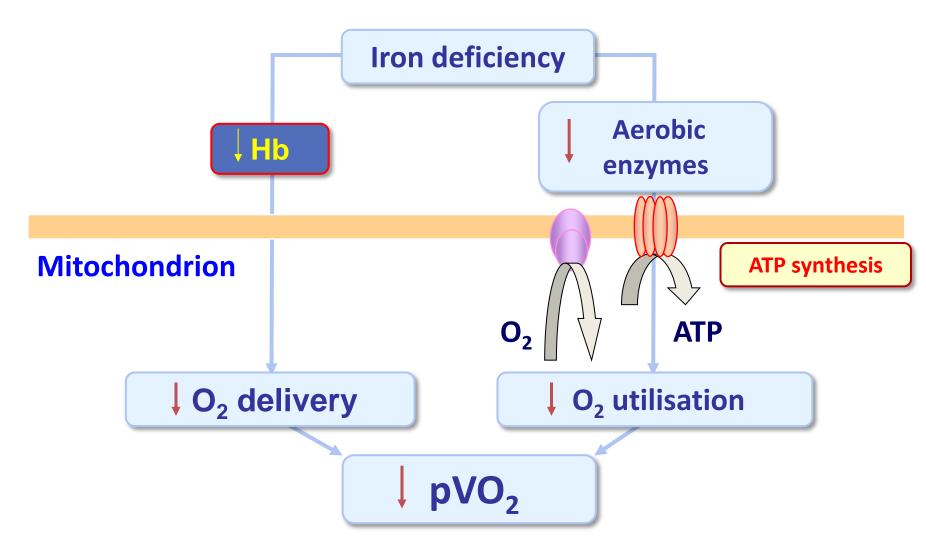
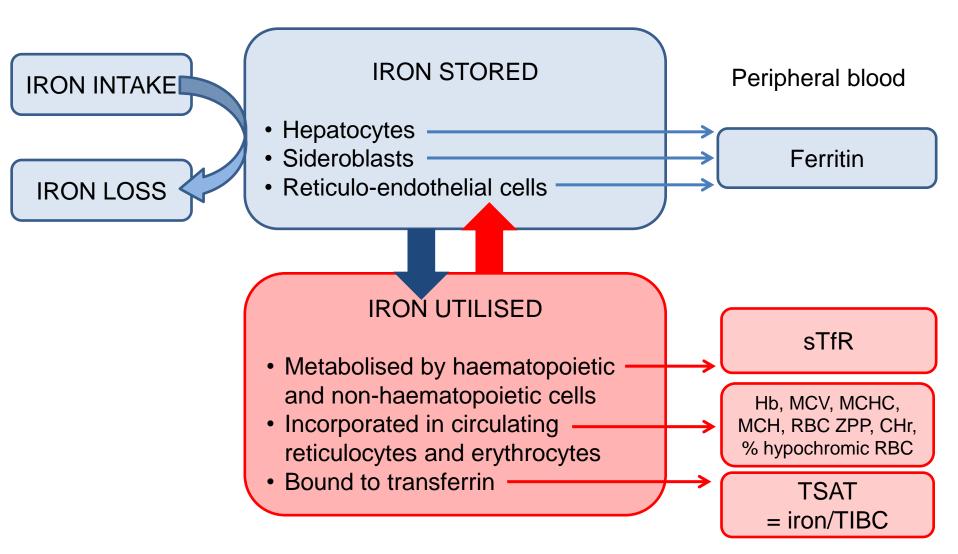
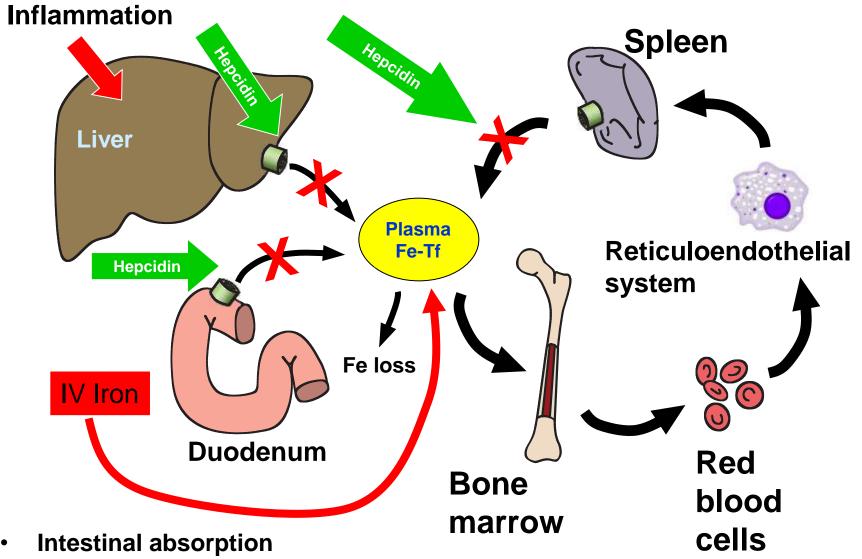

Iron metabolism – anemia and beyond

Jacek Lange St. Petersburg, September 17, 2015


Overview

- 1. Iron metabolism
- 2. CKD
- 3. CHF
- 4. Conclusions


Under normal healthy conditions, daily iron intake equals daily iron loss (1-2 mg/day)


Dual effects of iron deficiency: defective oxygen delivery and utilization

Iron storage and utilisation: interpretation of circulating biomarkers

Absorption of oral iron in inflammation

Release from hepatic cells and macrophages

Review on uremic toxins: Classification, concentration, and interindividual variability

Table 1. Free water-soluble low-molecular-weight solutes (N = 45)

RAYMOND VANHOLDER, RITA DE SMET, GRIET GLORIEUX, ANGEL ARGILES, ULRICH BAURMEISTER, PHILIPPE BRUNET, WILLIAM CLARK, GERALD COHEN, PETER PAUL DE DEYN, REINHOLD DEPPISCH, BEATRICE DESCAMPS-LATSCHA, THOMAS HENLE, ACHIM JÖRRES, HORST DIETER LEMKE, ZIAD A. MASSY, JUTTA PASSLICK-DEETJEN, MARIANO RODRIGUEZ, BERND STEGMAYR, PETER STENVINKEL, CIRO TETTA, CHRISTOPH WANNER, and WALTER ZIDEK, For the European Uremic Toxin Work Group (EUTox)

 $17.1 \pm 5.1/1$

 13.7 ± 16.9 13.5 ± 3.9/1

 0.2 ± 0.06

<30.2/66 18.1 ± 24.8

< 0.6/3

<77.0/66

<3.3/24

<55.3/10 9.7 ± 3.3/24

<468.0

<381.1/33 < 0.7/33

< 3.6/24

<11.8/16

 $1.5 \pm 0.5/145$ $257.7 \pm 81.7/30$

< 1.3/33

< 7.3/24

<10.0/8

 $9.0 \pm 4.7/10$

57.0 ± 17.1/10

18.5 ± 8.4/10

 $35.5 \pm 27.2/10$

 $0.5 \pm 1.4/30$

 $1.2 \pm 1.6/30$

 $0.3 \pm 0.1/8$

 $0.5 \pm 5.8/30$

 76.1 ± 21.0766

< 0.4/33

<52.2/24

< 0.4/23

<319.6/33

<224.0

<67.2

 $1.5 \pm 1.3/30$

 $0.5 \pm 1.4/180$

 $23.9 \pm 12.8/10$

<4.7

 $222.3 \pm 79.6/24$ $0.03 \pm 0.01/16$

<12.0/23

Kidney International, Vol. 63 (2003), pp. 1934-1943

Solute	CN	Cu	CMAX	MW	Ref	Group
2-methoxyresorcinol µg/L	-	19.6 ± 81.2/17	322.0°	140	[20]	Phenols
3-deoxyglucosone mg/L	$0.3 \pm 0.1/30$	$1.7 \pm 1.0/27$	3.5	162	[34]	AGE
CMPF mg/L	$7.7 \pm 3.3/7$	$61.0 \pm 16.5/15$	94.0°	240	[35]	
Fructoselysine mg/L	100 100 100	$58.1 \pm 10.8/10$	79.7	308	[10]	AGE
Glyoxal µg/L	67.0 ± 20.0	$221.0 \pm 28.0/20$	277.0	58	[36]	AGE
Hippuric acid mg/L	< 5.0	247.0 ± 112.07	471.0	179	[37]	Hippurates
**	1701		6.4	135	[38-40]	
			6.0°	110	[20]	Phenols
			6.9	175	[41,42]	Indoles
			6.0	251	[35]	Indoles
	- 1 / 1		2.6	208	[43]	Indoles
$\boldsymbol{\alpha}$ in			9.5	189	[44]	Indoles
/		.	0.0	16000	[45, 46]	Peptides
			6.2	126	[47]	Indoles
4			6.0	72	[36]	AGE
O			6.9	204	[11]	AGE
			0.7	108	[48]	Phenols
			4.0°	342	[49]	AGE
Phenol mg/L	$0.6 \pm 0.2/12$	$2.7 \pm 3.9/10$	10.5	94	[48]	Phenols
P-OHhippuric axid mg/L		$18.3 \pm 6.6/13$	31.5	195	[50]	Hippurates

77.4 ± 27.3725

 $1.5 \pm 0.9/54$

132.0

360.24

187.2

(N - 22)

0/184 0/29 9/230 9/104 0/8

CMAX

81.2

436.6

100.0°

492.0=

26.0°

20.0

1631.4

129.4

1843.0

1700.0

328.1

287.0

328.0

490.0

75.5° 115.9

2.4 369.2×

3.3

 $21.1 \pm 7.9/10$

 $0.1 \pm 0.05/10$

Table 2. Protein-bound solutes (N - 25)

maximal uremic concentration; MW, molecular weight; ref, reference; ducts. The underlined numbers behind the slash point to the number es that no data about the number of samples were available. Normal ed by <); uremic values are reported as means ± SD.

MW

5729

3080

11818

3465

3866

15800

23750

13300

4283

25000

24500

25000

25000

16000

555 4272

9225

21200

[54] [55] [53, 56]

[55] [61] [62] [63] [64] [64] [45, 46]

88

167

145

202

21200

Indoles

Pontides.

Polyamines

Polyamines

Group

Peptides

Peptides

Peptides

Peptides

Peptides.

Peptides

Peptides

Peptides

Peptides

Peptides

Peotides

Cytokines

Cytokines

Peptides

Peptides

Peptides

Peptides

Peptides

Peptides

Pentides

Cytokines

Polyamines

List updated

Putrescine ue/L.

Opinolinic acid me/I.

$28.8 \pm 18.3/29$	65.4	131	[21]	Guanidines	
62.7/22	108.8°	461	[22]	Peptides	
134:0 ± 30:3/29	235.8	131	[21]	Guanidines	
1200 40000740	240.0	117	122 241	Phone i Phone	
6					
ST					

Int Urol Nephrol (2013) 45:139-150 DOI 10.1007/s11255-012-0258-1

NEPHROLOGY - REVIEW

An update on uremic toxins

N. Neirvnck · R. Vanholder · E. Schepers ·

S. Eloot · A. Pletinck · G. Glorieux

or medians have been obtained, was given. Normal values are repo D or, in the case of a single value	MW, molecular weight; ref, reference. No underlined number indicates that orted as mean ± SD, or in the case of e, as a median.
n Cu)	

Abbreviations are: Cx, normal concentration; Cc, mean/median uremic conc ADMA, asymmetrical dimethylarginine; SDMA, symmetrical dimethylargini means or medians have been obtained. No underlined number indicates that i means ± SD, or in the case of a single value as a maximum (accompanied by

Solute

1-methyladenosine ug/L

1-methylguanosine #g/L

α-N-acetylarginine μg/L. Arab(in)itol mg/L

Argininic acid µg/I.

Benzylalcohol mg/L B-quanidinopropionic acid µg/L

B-lipotropin ng/L

Creatine mg/L

Cytidine #g/L

Creatinine mg/L.

Erythritol mg/L

Guanidine µg/L.

Mannitol mg/L

Dimethylglycine µg/L

y-guanidinobutyric acid µg/L

Guanidonosuccinic acid mg/L Hypoxanthine mg/L

N2,N2-dimethylguanosine µg/L.

N6-threonylcarbamovladenosine µg/L

Guanidinoacetic acid up/L

Malondialdehyde ug/L

Methylguanidine µg/L. Myoinositol mg/L

N4-acetylcytidine µg/L

Orotic acid mg/L

Pseudouridine mg/L.

Taurocyamine µg/I.

Orotidine mg/L

Oxalate mo/L

SDMA #g/L

Sorbitol mg/L

Threitol ug/L.

Uracil µg/L

Urea g/L

Thymine mg/L

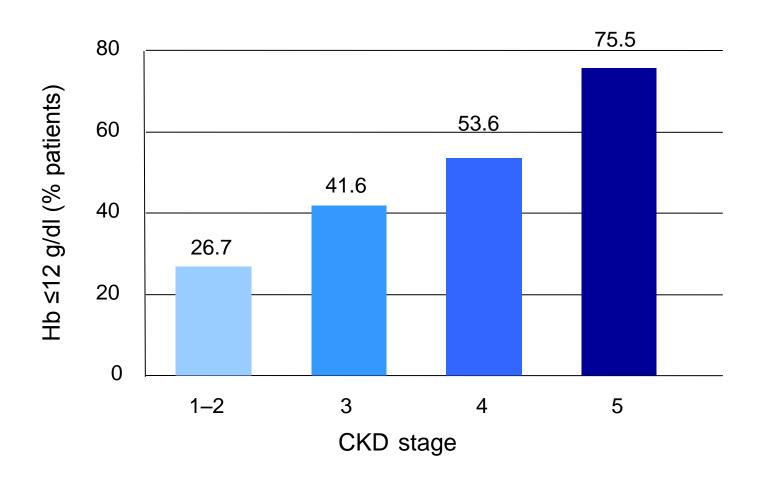
Uric acid mg/L

Xanthine mg/L

Xanthosine ug/L

Uridine mg/L

Nº-methyladenosine μg/L

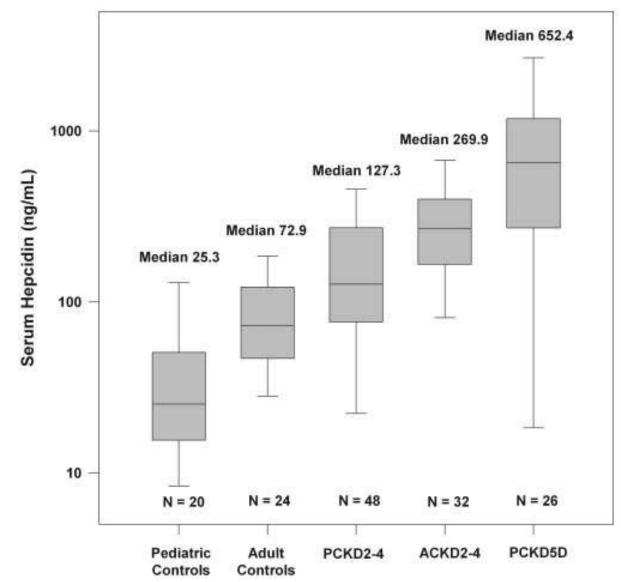

Phenylacetylplutamine mg/L

α-keto-8-guanidinovaleric acid μg/L

1-methylinosine µg/L ADMA mg/L

*C_{MAX} values are original data (all other values were calculated as mean + 2

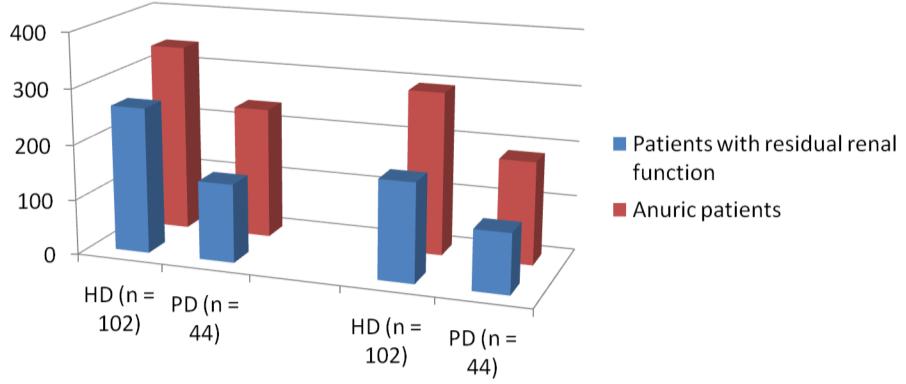
Anemia is frequent in patients with CKD


Cross-sectional, US multicenter survey of 5,222 adult patients at 237 physician practices

Why anemia in CKD?

EPO

- Impaired production
- Impaired receptors' function
- 2. Impaired iron absorption
 - Level of intoxication local inflammation in digestional tract
 - General inflammation due to uremia
 - Hepcidin
- 3. Iron loss
 - Loss of few mls in every HD session = * 156 times / year
 - Loss through digestional tract
 - Other bleedings (Heparin, LMWH, local inflammation)
- 4. Functional iron deficiency due to ESA & inflammation
- 5. Impaired vitamins' intestinal absorption Vit B12, folic acid


Hepcidin – a potential novel biomarker of Iron status in Chronic Kidney Disease

Zaritsky J et al.: Clin J Am Soc Nephrol 2009;4:1051-1056

Inflammation vs. iron balance in PD and HD patients

Assessment of prohepcidin and hepcidin in serum, urine, and ultrafiltrate/peritoneal effluent

Serum prohepcidin

Serum hepcidin

Malyszko J et al.: Type of renal replacement therapy and residual renal function may affect prohepcidin and hepcidin. Ren Fail 2009;31(10):876-883

Iron sucrose (Venofer®) facilitates ESA dose optimalization in HD patients

Study	Design	n	Venofer® dose	Baseline Hb (g/dL)	Duration	Change in ESA dose vs baseline
Richardson 2001	Consecutive patients	386	N x50 mg iron as Venofer®	11.3	24 months	~47% reduction
	Single-center					
Li 2008	Randomized Single-center	26	200 mg iron/week for 4 weeks then 200 mg iron every 2 weeks for 4 weeks	8.9	8 weeks	~20% reduction
Schiesser 2006	Single-arm Multicenter	50	24 x50 mg iron as Venofer® weekly	12.1	6 months	~38.5% reduction (darbepoetin) 6.3/8.3% (epoetin alfa/beta)
Descombes 2000	Single arm Single-center	25	Dose adjusted by serum ferritin level	11.5	18 months	~32% reduction
Hussain 1998	Two arm Single-center	20	100 mg iron as Venofer® twice weekly or oral iron	7.8-8.0	3 months	~25% reduction versus oral iron

Iron sucrose in hemodialysis – extensive safety profile – 13,5 mln patients

Study	Dosing	n	Duration	Safety outcomes
Aronoff ¹ 2004	10x100 mg iron as Venofer®	665	Mean 101 days	No serious or life-threatening adverse events reported
Charytan ² 2001	10x100 mg iron as Venofer®	77	8 weeks	No serious adverse events or withdrawals due to drug-related adverse events observed
Richardson ³ 2001	N x50 mg iron as Venofer®	386	24 months	Venofer withheld in only 2 out of 386 patients. Good safety profile
Schiesser ⁴ 2006	24 x50 mg iron as Venofer® weekly	50	6 months	No serious adverse events or hypotensive episodes. Only one AE was classified as possibly related to Venofer®
Hussain ⁵ 1998	100 mg iron as Venofer [®] twice weekly	10	3 months	No adverse events reported

^{1.} Aronoff GR et al. Kidney Int 2004;66:1193-1198
2. Charytan C et al. Am J Kidney Dis 2001;37:300-307

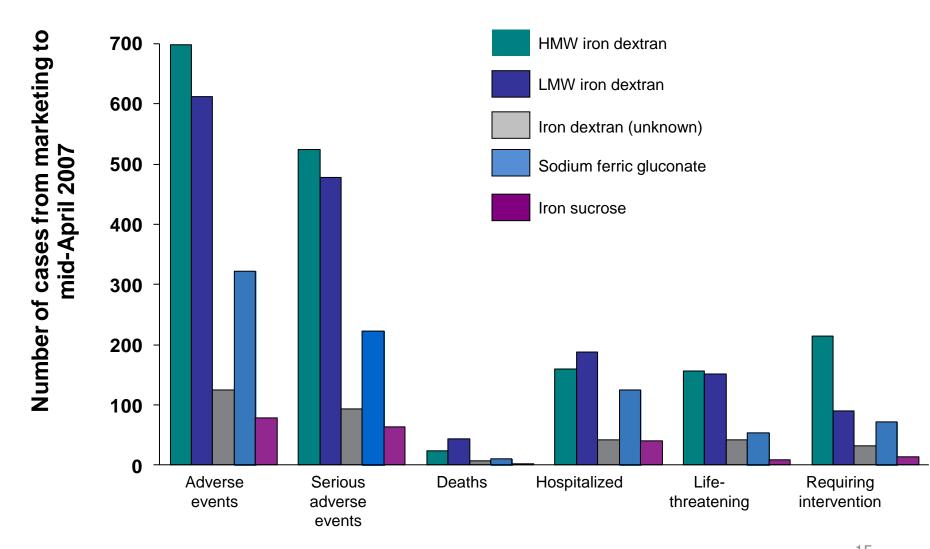
^{3.} Richardson D et al. Am J Kidney Dis 2001;38:109-117

^{4.} Schiesser D et al. Nephrol Dial Transplant 2006;21:2841-2845 5. Hussain R et al. Nephrology 1998;4:105-108

Safety comparison of I.V. iron preparations Switch from Iron Dextran/Iron Gluconate to Iron Sucrose

Study	Design	n	History of intolerance	Safety outcomes
Van Wyck 2000¹	Single-arm Multi-center	23	Iron dextran	No serious adverse drug reactions or drug discontinuation due to any drug-related adverse event
Charytan 2004 ²	Pooled data from 4 prospective studies	130	Iron dextran and/or iron gluconate	No serious adverse events
Aronoff 2004 ³	Single-arm Single-center	80*	Iron dextran and/or iron gluconate	No drug-related serious adverse events
Haddad 2009 ⁴	Single-arm Single-center	15	Iron dextran	No hypersensitivity reaction to Venofer®

^{1.} Van Wyck DB et al. Am J Kidney Dis 2000;36:88-97


^{2.} Charytan C et al. Nephron Clin Pract 2004;96:c63-66

^{3.} Aronoff GR et al. Kidney Int 2004;66:1193, 1198

^{*80} patients among a total population of 665

^{4.} Haddad A et al. Saudi J Kidney Dis 2009;20:208-211

Wysowski et al, 2010

Properties of ferric carboxymaltose (Ferinject®)

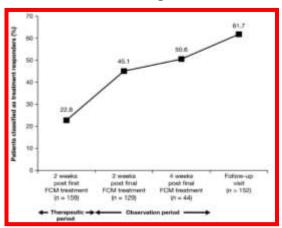
Ferric Carboxymaltose:

- Water soluble
- Macromolecular complex of polynuclear iron(III)oxohydroxide stabilised by a carboxymaltose ligand
- Molecular weight of approximately 150 kDa
 - ensuring minimal renal elimination

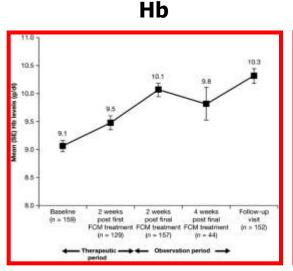
Characteristics of ferric carboxymaltose (Ferinject®)

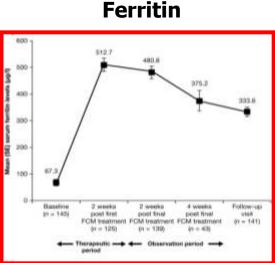
Effective correction of iron deficiency

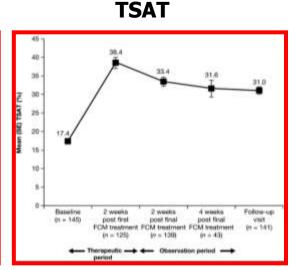
- High single doses (up to 1000 mg iron*)
- Rapid administration
 - 200 mg iron bolus push
 - 1000 mg iron infusion in 15 min
- Selective delivery to bone marrow


Low immunogenic potential

- Free of dextran derivatives
- No cross-reaction with dextran antibodies
- No test dose required

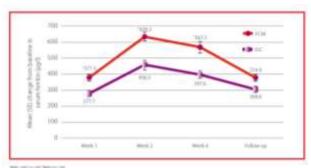

With FCM Hb and iron parameters in HD


Responders = Proportion of patients attaining an increase in Hb ≥1.0 g/dl

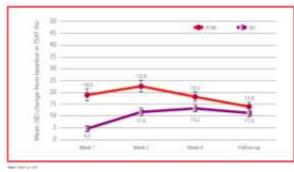

(Covic et al., 2010)

- FCM 100-200 mg at each HD session for a max. 6 weeks.
- n=163
- 120 patients -> ESA
- 63 patients -> no ESA



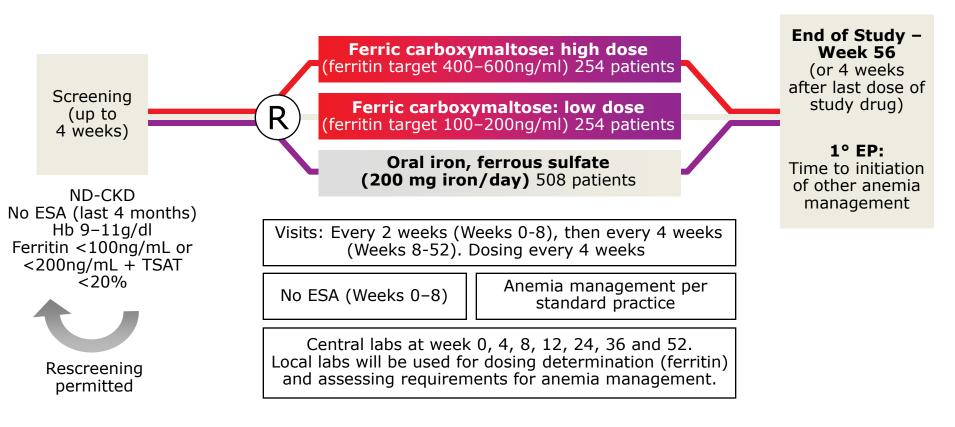


FCM in HD patients – Hb level


200 mg of iron 2-3 times a week according to requirements, FCM (n = 119) vs. IS (n = 118)

Hb conc.

Serum ferritin conc.



TSAT

FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia

Iain C. Macdougall¹, Andreas H. Bock², Fernando Carrera³, Kai-Uwe Eckardt⁴, Carlo Gaillard⁵, David Van Wyck⁶, Bernard Roubert⁷, Jacqueline G. Nolen⁷ and Simon D. Roger⁸ on behalf of the FIND-CKD Study Investigators[†]

FIND-CKD: Study design

Primary endpoint:
 Time to initiation of other anemia management (e.g. ESA or blood transfusion)

Macdougall IC et al. J Am Soc Nephrol 2009; 20: 660A (SA-PO2402)

Results – primary endpoint

- 1. The increase in the Hb level significantly greater with high sF FCM versus oral iron.
- The hematological response <u>faster</u>, and the proportion of patients with an increase in Hb level ≥ 1 g/dL significantly greater with high sF FCM versus oral iron or low sF FCM.

Results – secondary endpoint

Table 2. Secondary efficacy endpoints

	High ferritin FCM (n=153)	Low ferritin FCM (n=152)	Oral iron (n=308)
Blood transfusion, n (%)	12 (7.8)	11 (7.2)	26 (8.4)
Hb increase ≥1 g/dL, n (%)	87 (56.9)*	52 (34.2)	99 (32.1)
Change from baseline to mo	nth 12 (least squares me	ean [SE])	
Hb, g/dL²	1.4 (0.1)**	0.9 (0.1)	1.0 (0.1)
Ferritin, µg/L ^b	451 (10)***	81 (11)***	137 (8)
TSAT, %⁵	15.8 (1.3)	8.5 (1.3)+	13.8 (1.0)
eGFR, mL/min/1-73m ^{2c}	0.4 (0.8)	-1.6 (0.8)	-1.1 (0.6)

^{*} Prior to first initiation of other anemia management

^b Measured up to the point at which other anemia therapy was initiated and/or study drug was discontinued

^c MDRD formula

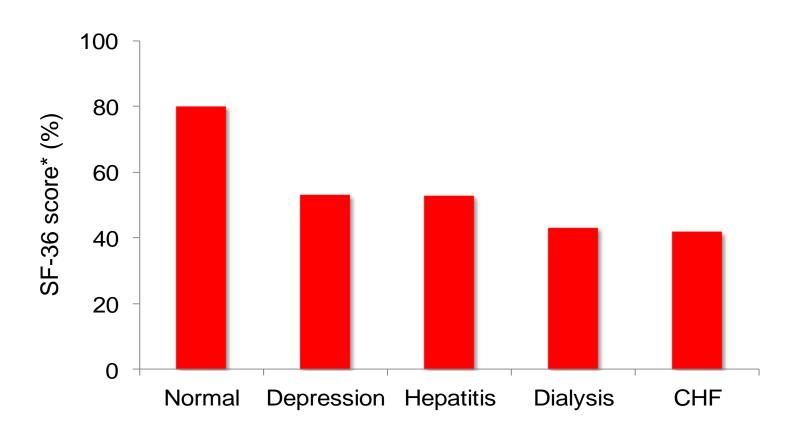
p<0.001 versus low ferritin FCM and oral iron (Kaplan-Meier estimates, log rank test)

^{**} p=0.014 versus oral iron

^{***} p<0.001 versus oral iron

tp=0.001 versus oral iron

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Ferric Carboxymaltose in Patients with Heart Failure and Iron Deficiency

Stefan D. Anker, M.D., Ph.D., Josep Comin Colet, M.D.,
Gerasimos Filippatos, M.D., Ronnie Willenheimer, M.D.,
Kenneth Dickstein, M.D., Ph.D., Helmut Drexler, M.D.,*
Thomas F. Lüscher, M.D., Boris Bart, M.D., Waldemar Banasiak, M.D., Ph.D.,
Joanna Niegowska, M.D., Bridget-Anne Kirwan, Ph.D., Claudio Mori, M.D.,
Barbara von Eisenhart Rothe, M.D., Stuart J. Pocock, Ph.D.,
Philip A. Poole-Wilson, M.D.,* and Piotr Ponikowski, M.D., Ph.D.,
for the FAIR-HF Trial Investigators*

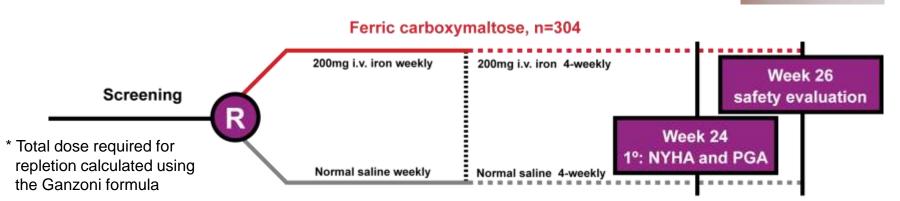
NEJM 2009

Quality of life in HF patients

^{*} General health perceptions

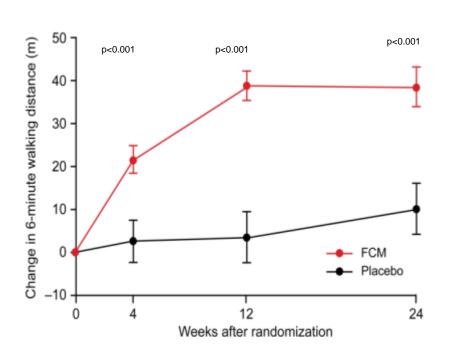
Preferences

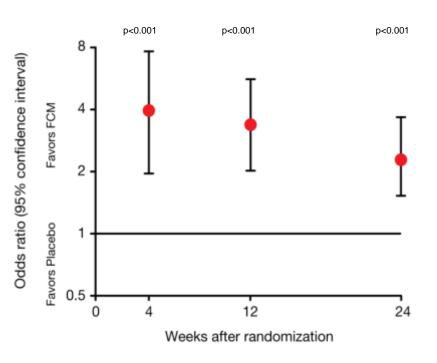
Earning money Making love Driving a car Having friends No bedwetting Walking 18 20 35 50 60 80


FAIR-HF study design

- Main inclusion criteria:
 - NYHA class II/III, LVEF ≤40% (NYHA II) or ≤45% (NYHA III)
 - Hb: 9.5-13.5 g/dL
 - Iron deficiency: serum ferritin <100 μg/L or <300 μg/L, if TSAT <20%
- Treatment adjustment algorithm:
 - Interruption: Hb >16 g/dL or serum ferritin >800 μg/L or serum ferritin >500 μg/L, if TSAT >50%
 - Restart: Hb <16 g/dL and serum ferritin <400 μg/L and TSAT<45%
- Blinding:
 - Clinical staff: unblinded and blinded personnel
 - Patients: usage of curtains and black syringes for injections

Correction phase*


Maintenance phase



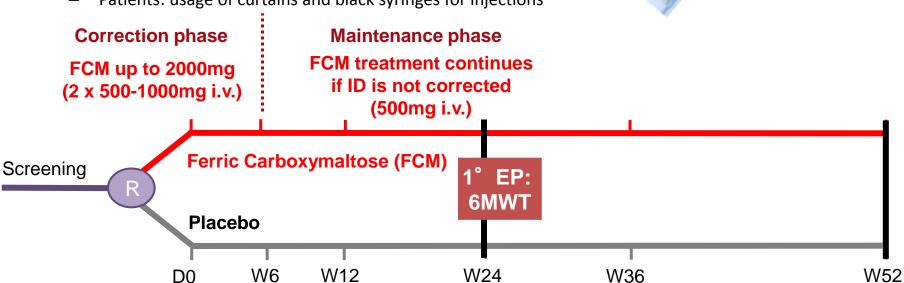
Placebo, n=155

FAIR-HF results

6-minute walk test

NYHA functional class

CONFIRM-HF Study design

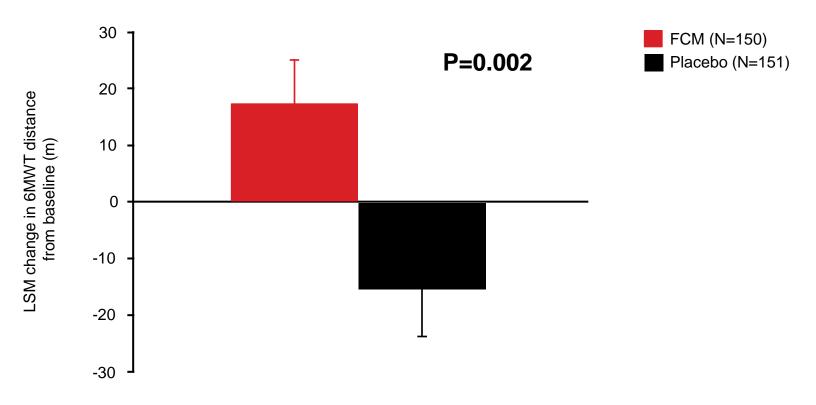

Design: Multicentre, randomised (1:1), double-blind, placebo-controlled

Main inclusion criteria:

- NYHA class II / III, LVEF ≤45%
- BNP > 100 pg/mL or NT-proBNP > 400 pg/mL
- Iron deficiency: serum ferritin <100 ng/mL or 100-300 ng/mL if TSAT <20%
- Hb < 15 g/dL

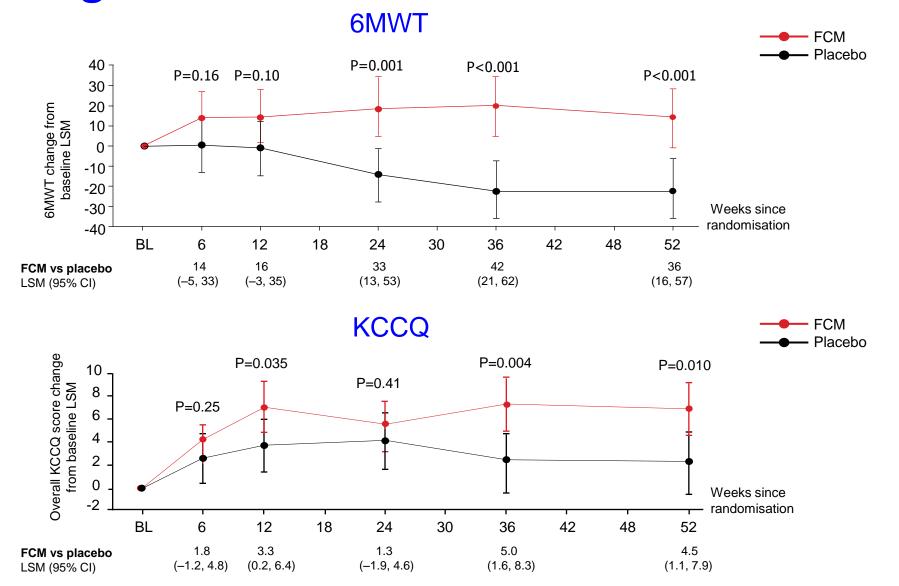
Blinding:

- Clinical staff: unblinded and blinded personnel
- Patients: usage of curtains and black syringes for injections



Primary endpoint: Change in 6MWT at Week 24

FCM improved 6MWT at week 24


FCM vs placebo: $33 \pm 11 \text{ m}$ (least squares mean $\pm SE$)

Week 24

Secondary endpoints:

Changes in 6MWT distance and QoL over time

CONFIRM-HF

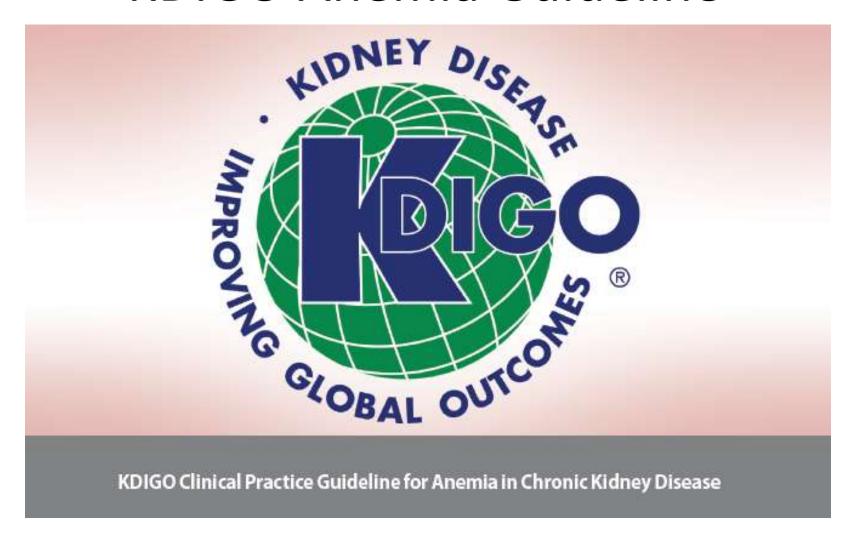
Secondary endpoints: Outcome events

	FCM (N=150)		Placebo (N=151)			
End-point or event	Total events (n)	Incidence/ (100 patient risk-year)	Total events (n)	Incidence/ (100 patient risk-year	Time to first event Hazard ratio 95% CI	P- value
Death	12	12 (8.9)	14	14 (9.9)	0.89 (0.41 – 1.93)	0.77
Death for any CV reason	11	11 (8.1)	12	12 (8.5)	0.96 (0.42 – 2.16)	0.91
Hospitalisation	46	32 (26.3)	69	44 (37.0)	0.71 (0.45 – 1.12)	0.14
Hospitalisation for any CV reason	26	21 (16.6)	51	33 (26.3)	0.63 (0.37 – 1.09)	0.097
Hospitalisation due to worsening HF	10	10 (7.6)	32	25 (19.4)	0.39 (0.19 – 0.82)	0.009

FCM reduced the risk of recurrent hospitalisations due to worsening HF (post hoc):

Hazard Ratio (95% CI) - 0.30 (0.14-0.64), p=0.0019

Controversies on Iron Management in CKD Conference March 27-30, 2014, San Francisco Steering Committee


Glenn Chertow, USA – Conference Co-Chair lain Macdougall, UK – Conference Co-Chair

Iron Over	load	Inflammation & Iron & Infe		ection	Hypersensitivity React to IV Iron				
Co-Chairs:									
Eckardt (DE)	Kai-Uwe	Wanner (DE)	Christoph	Weiss (AT)	Günter	Bircher (CH)	Andreas		
Swinkels (NL)	Dorine W.	Stenvinkel (SE)	Peter	Obrador (MX)	Greg	Pollock (AU)	Carol		
	8	- 100	Group	members:	10	Ž.	20		
Adamson (US)	John	Bárány (SE)	Peter	Akizawa (JP)	Tadao	Auerbach (US)	Michael		
Anker (DE)	Stefan	Gaillard (NL)	Carlo	Collins (US)	Alan	Bhandari (UK)	Sunil		
Besarab (US)	Anatole	Goldsmith (UK)	David	de Francisco (SP)	Angel	Cabantchik (IL)	loav		
Coyne (US)	Dan	Jankowska (PL)	Ewa	McMahon (AU)	Lawrence	Castells (US)	Mariana		
Fishbane (US)	Steve	Locatelli (IT)	Francesco	Mikhail (UK)	Ashraf	Demoly (FR)	Pascal		
Ganz (US)	Tomas	Malyszko (PL)	Jolanta	Nemeth (US)	Elizabeta	Kalra (UK)	Philip		
Hershko (IL)	Chiam	Slotki (IL)	Itzchak (lan)	Parfrey (CA)	Patrick	Levin (CA)	Adeera		
Kalantar-Zadeh (US)	Kam	Toblli (AR)	Jorge	Pecoits-Filho (BR)	Roberto	Ring (DE)	Johannes		
Roger (AU)	Simon	Vaziri (US)	Nick	Tentori (US)	Francesca	Rottembourg (FR)	Jacques		
Rostoker (FR)	Guy	Wheeler (UK)	David	Wiecek (PL)	Andrzej	Spinowitz (US)	Bruce		
Singh (US)	Ajay			Winkelmayer (US)	Wolfgang C.				

Controversies on Iron Management in CKD - Conclusions

- While there are <u>potential risks</u> associated with iron therapy, <u>appropriate use</u> of iron to treat iron deficiency <u>can help</u> <u>minimise</u> these risks and <u>result in benefits</u> for patients.
- 2. The **benefits** of iron therapy outweigh the risks.
- 3. Preliminary consensus from the controversies conference suggests there is **not sufficient new information** that requires updating the current *KDIGO anemia management guideline*.
- 4. The conference reinforced the importance of clinicians using the **guidelines** in clinical practice. **KDIGO guidelines still valid.**

KDIGO Anemia Guideline

KDIGO Anemia Guideline

- 2.1.1 When prescribing iron therapy, balance the potential benefits of avoiding or minimizing blood transfusions, ESA therapy, and anemia-related symptoms against the risks of harm in individual patients (e.g., anaphylactoid and other acute reactions, unknown long-term risks). (Not Graded)
- 2.1.2 For adult CKD patients with anemia **not on iron or ESA** therapy we suggest a **trial of IV iron** (or in CKD ND patients alternatively a 1-3 month trial of oral iron therapy) if (2C):
- 2.1.3 For adult CKD patients on ESA therapy who are not receiving iron supplementation, we suggest a trial of IV iron (or in CKD ND patients alternatively a 1-3 month trial of oral iron therapy) if (2C):

Goals:

- •an increase in Hb concentration without starting ESA treatment and
- •TSAT is ≤ 30% and ferritin is ≤ 500 ng/ml

Conclusions

- Can we use IV iron in CKD patients?
 YES, WE CAN. We even have to.
- Is oral iron possible to be used?Yes, it is.

BUT

- in most cases the ID is 1,5 2,0 g;
- absorbtion of 1-2 mg/day;

Compliance?

- 3. Is every iron the same?
 - **No**, there is a individualization needed.
- 4. <u>Iron deficiency</u> is not only <u>Iron deficiency anemia</u>!!!

Preferences

Earning money Making love Driving a car Having friends No bedwetting Walking 18 20 35 50 60 80

Большое спасибо Thank you very much