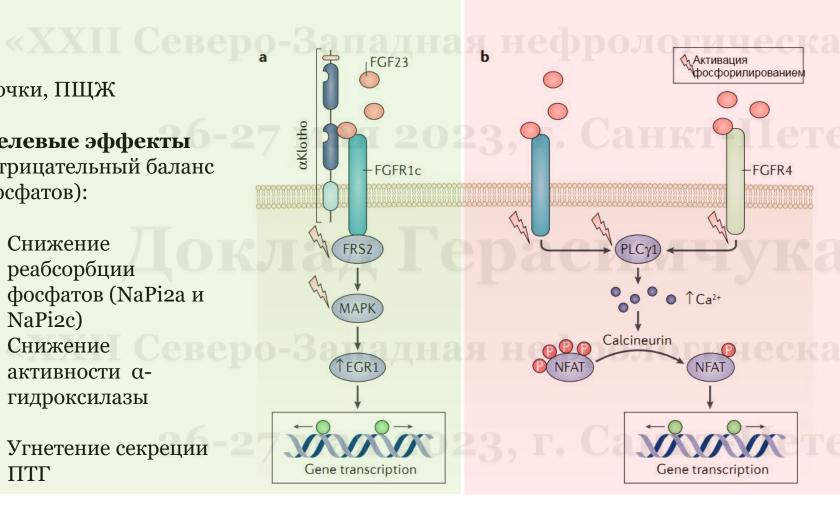
Стратегии снижения биоактивности FGF23

СПбГБУЗ «Городская Мариинская больница» Кафедра внутренних болезней, клинической фармакологии и нефрологии СЗГМУ

Герасимчук Р.П.

Now, we need 6

Открытие FGF23 Герасимчука Р.П.


- Секретируется остеобластами и остеоцитами
- Найден в качестве гуморального фактора, ответственного за развитие аутосомно-доминантого гипофосфатемического рахита
- Оказался ответственным за развитие остеомаляции при секретирующих мезенхимальных опухолях
- Выраженное повышение у пациентов с ХБП

Рецепторы, передача сигнала и эффекты

Почки, ПЩЖ

Целевые эффекты (отрицательный баланс фосфатов):

- Снижение реабсорбции фосфатов (NaPi2a и NaPi2c)
- Снижение активности αгидроксилазы
- Угнетение секреции ПТГ

Сердечно-сосудистая система, ЖКТ

Нецелевые эффекты:

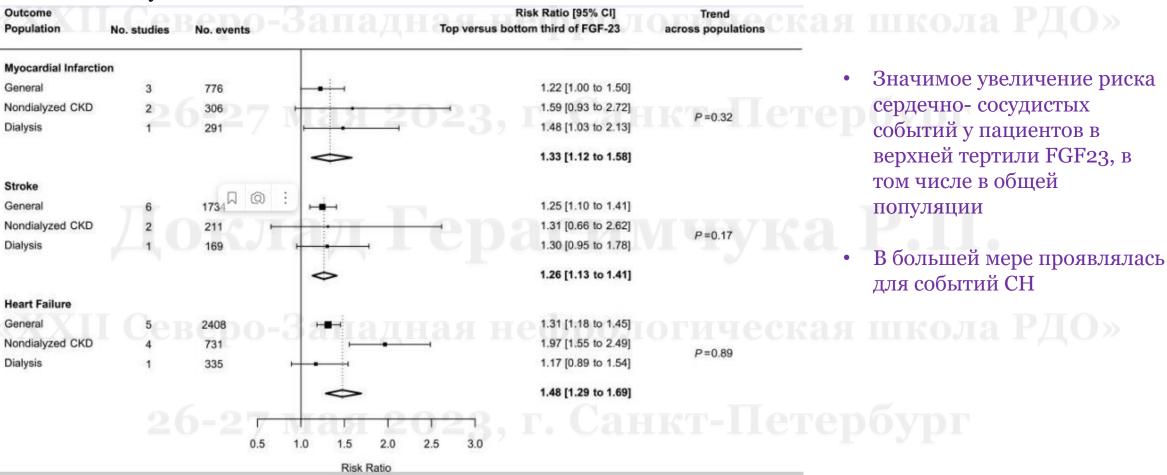
- ГЛЖ
- Диастолическая дисфункция
- Повышенная экспрессия IL-6 и СРБ гепатоцитами
- Замедление миграции нейтрофилов
- Апоптоз эритроидных клеток

Значение изучения FGF23

- Изменил/существенно дополнил представление о патогенезе вторичного гиперпаратиреоза
 - Фосфатцентрическая теория и основная направленность на раннюю коррекцию обмена фосфора
 - На ранних стадиях ВГПТ компенсаторная реакция организма
- FGF 23 маркер/фактор риска неблагоприятных (кардиологических) исходов у пациентов с ХБП и в общей популяции

FGF 23 и риск смерти расимчука Р.П.

У пациентов с ХБП (CRIC study) 3,879 пациентов



- Выраженная ассоциативная связь риска смерти с уровнем FGF23, которая только укреплялась при проведении коррекции
- Зависимость сопоставима с зависимостью от уровня фосфатов

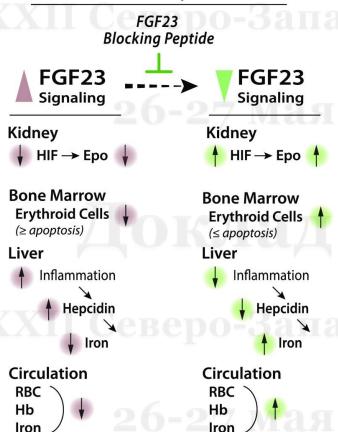
оза г. Санкт-Петербург

FGF23 и риск сердечно-сосудистых событий

В общей популяции: данные мета-анализа

FGF23 и риск инфекций расии чука Р. П.

• FGF 23 на моделях мышей увеличивал риск развития пневмонии за счет замедления миграции нейтрофилов, за счет противодействия активации β2-интегрина. С восстановлением иммунной активности при деактивации FGF23


Jan Rossaint et al. PMID: 26878171

• В исследовании HEMO FGF23 был связан со смертностью от инфекций (КР 1,57; ДИ 95% 1,13-2,18)

26-27 мая 2023, г. Санкт-Петербург

FGF 23 и анемия Герасимчука Р.П.

Chronic Kidney Disease

- Высокие уровни FGF23 на мышиной модели почечной недостаточности способствуют развитию почечной анемии, а ингибирование передачи сигналов FGF23 стимулирует эритропоэз и устраняет анемию и дефицит железа.
- Ингибирование передачи сигналов FGF23 значительно снижает апоптоз эритроидных клеток и влияет на присоединение гемопоэтических стволовых клеток к эритроидной линии.
- Блокирование передачи сигналов FGF23 ослабляет воспаление, что приводит к повышению уровня сывороточного железа и ферритина.

Потенциальные направления воздействия на FGF23

- Уменьшение образования
- Ускорение выведения
- Инактивация активного FGF23 моноклональными антитемами • Блокирование FGFR

Уменьшение образования снижение фосфатной нагрузки

Диета

ФСП

ФСП Ингибиторы активного и пассивного транспорта в кишечнике

Малобелковые диеты, метаанализ

19 исследований, 2492 пациента

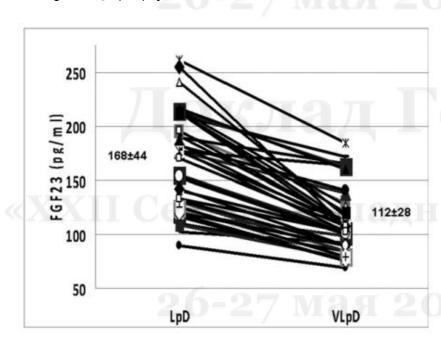
События почечной недостаточности

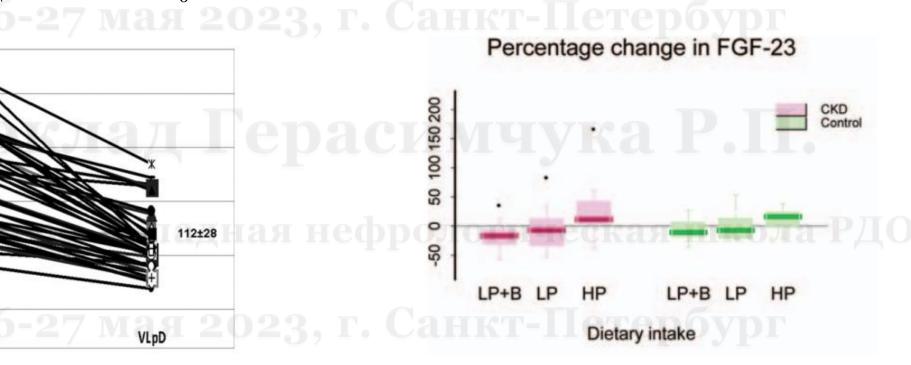
$\langle \langle X X \rangle \rangle$	Events/Pa	atients		пная
Study, Year T	reatment	Control	James	OR (95% CI)
Ihle 1989	2/31	9/33 ←	- 	0.18 (0.04, 0.93)
Locatelli 1991	27/230	42/226	Mag	0.58 (0.35, 0.98)
Williams 1991	17/33	29/62	IVII O	1.21 (0.52, 2.82)
D'Amico 1994	18/63	26/65	•	0.60 (0.29, 1.26)
MDRD-study A 2006	154/291	173/294		0.79 (0.57, 1.09)
MDRD-study B 2009	110/126	117/129		0.71 (0.32, 1.56)
Mircescu 2007	1/27	7/26		0.10 (0.01, 0.92)
oya 2009	19/56	19/56	1	1.00 (0.46, 2.19)
Garneata 2016	14/104	41/103	Запа	0.24 (0.12, 0.47)
Kidney Failure (I-squared = 56.2%)	362/961	463/994	\Diamond	0.59 (0.41, 0.85)
ESRD (I-squared = 33.9%, p = 0.170)	298/668	361/703		0.64 (0.43, 0.96)
		6 = 0.1		2023

Влияние на фосфаты

Study, Year	N, mean (SD); Treatment	N, mean (SD); Control	INOMA	MD (95% CI)
lhle 1989	31, 0.07 (2.95)	33, 0.06 (1.53)		0.01 (-1.15, 1.17)
Raal 1994	11, -0.13 (0.25)	11, -0.05 (0.3)	VU.	-0.08 (-0.31, 0.15)
lorio 2003	10, -0.19 (0.24)	10, 0.09 (.015)	•	-0.28 (-0.46, -0.10)
Meloni DN 2004	40, -0.36 (0.24)	40, 0.19 (0.2)	-	-0.55 (-0.65, -0.45)
Meloni non-DN 2004	44, -0.16 (0.2)	45, 0.1 (0.21)	•	-0.26 (-0.35, -0.17)
Mircescu 2007	27, -0.45 (0.62)	26, 0.097 (0.69)	• 11.	-0.55 (-0.90, -0.19)
Jiang 2009	40, 0.05 (0.31)	20, 0.43 (0.44)	-	-0.38 (-0.60, -0.16)
Qiu 2012	12, -0.19 (0.65)	11, 0.13 (0.25)		-0.32 (-0.72, 0.08)
Garneata 2016	104, -0.48 (0.91)	103, 0.13 (0.68)	и :ола 1	-0.61 (-0.83, -0.39)
Overall (/-squared = 75.6%)	319	299	\Diamond	-0.37 (-0.50, -0.24)
				\neg

Малобелковые диеты и FGF23

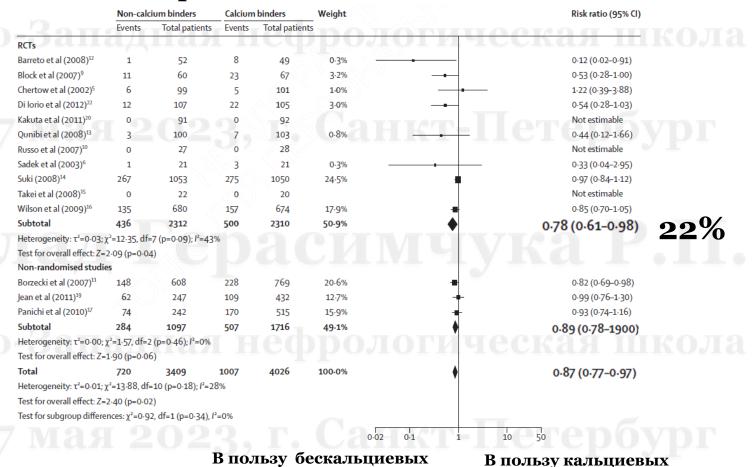

Перекрестное исследование 32 пациента ХБП 3Б-4


Малобелковая диета (LpD) 0,6 г/кг/сут

167.8±44.1 p < 0.001

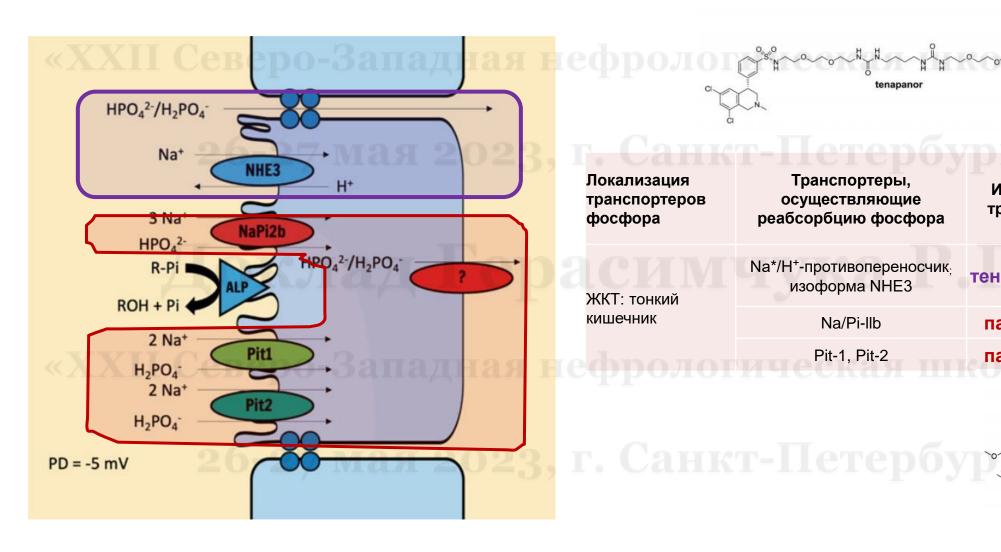
Очень малобелковая диета (VLpD) 0,3 г/кг/сут

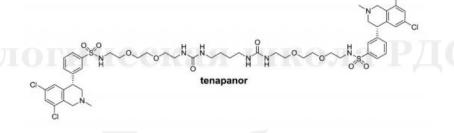
111.6±8.5

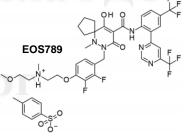

Влияние приема ФСП на уровень FGF23

Исследование	N	Средняя СКФ	Длительность	Вмешательство	Основные биохимические эффекты
Oliveira et al	40	35	6 недель	Севеламера гидрохлорид и Кальция ацетат	По сравнению с ацетатом кальция лечение севеламером карбонатом привело к: • умеренному снижению уровня фосфатов в моче за 24 часа • отсутствию изменений в уровнях фосфатов в сыворотке • 40% снижению уровней FGF23
Isakova et al	39	Ce ³⁸ 8e]	12 недель	диета с 900 мг фосфатов + лантана карбонат и свободная диета	По сравнению со свободной диетой прием 900 мг фосфата в день + один раз в день лантана карбоната приводил к: • отсутствию изменений уровня фосфатов в моче за 24 часа • отсутствию изменений уровней фосфатов в сыворотке • снижению уровня FGF23 на 35 %.
Block et al	145	31	36 недель	ФСП и плацебо	По сравнению с плацебо лечение фосфатсвязывающими препаратами приводило к: • 22-процентному снижению уровня фосфатов в моче за 24 часа • снижению уровня фосфатов в сыворотке со среднего значения 4,2–3,9 мг/дл • отсутствию снижения уровня С-концевого FGF23 Уровни интактного FGF23 снижались при приеме севеламера карбоната, но не с ацетата кальция или карбоната лантана Уровни интактного FGF23 увеличились при приеме ацетата кальция
Block et al	141	24	12 недель	Цитрат железа и плацебо	По сравнению с плацебо лечение цитратом железа приводило к: • снижению уровня фосфатов в моче на 39 %; • снижению уровня фосфатов в сыворотке со среднего значения 4,5–3,9 мг/дл; • снижению уровня FGF23 со среднего значения 159–105 пг/мл.
lx, Rao et al	261	52 Cebei	24 недель	Ниацин и плацебо	По сравнению с плацебо лечение ниацином приводило к: • отсутствию данных о 24-часовом уровне фосфатов в моче • снижению уровня фосфатов в сыворотке • снижению уровня FGF23 на 11 %.
Chue et al ⁸⁹	109	50	36 недель	Севеламера карбонат и плацебо	По сравнению с плацебо, лечение севеламером карбонатом приводило к: • отсутствию изменений уровня фосфатов в моче за 24 часа • отсутствию изменений уровней фосфатов в сыворотке • отсутствию изменений уровней FGF23 Снижение уровней FGF 23 у лиц, соблюдающих режим активной терапии
Seifert et al	38	46	48 недель	Лантана крбонат и плацебо	По сравнению с плацебо лечение карбонатом лантана приводило к: • отсутствию изменений уровня фосфатов в суточной моче • отсутствию изменений уровней фосфатов в сыворотке • отсутствию изменений уровней FGF23

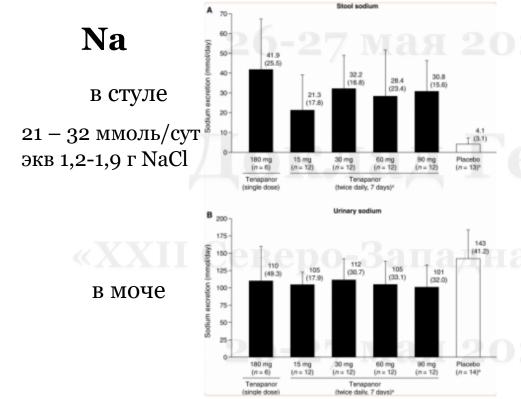
Улучшение выживаемости при терапии ФСП преимущественно определяется бескальциевыми ФСП

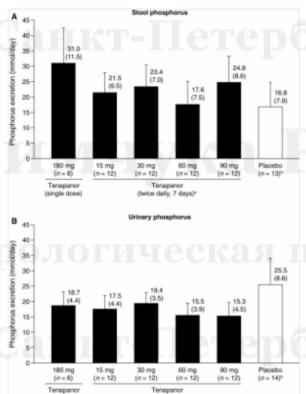

Общая смертность для каждого типа ФСП


11 РКИ


Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Jamal SA et al. Lancet 2013 Oct 12;382(9900):1268-77

Ингибиторы локальных транспортеров фосфора

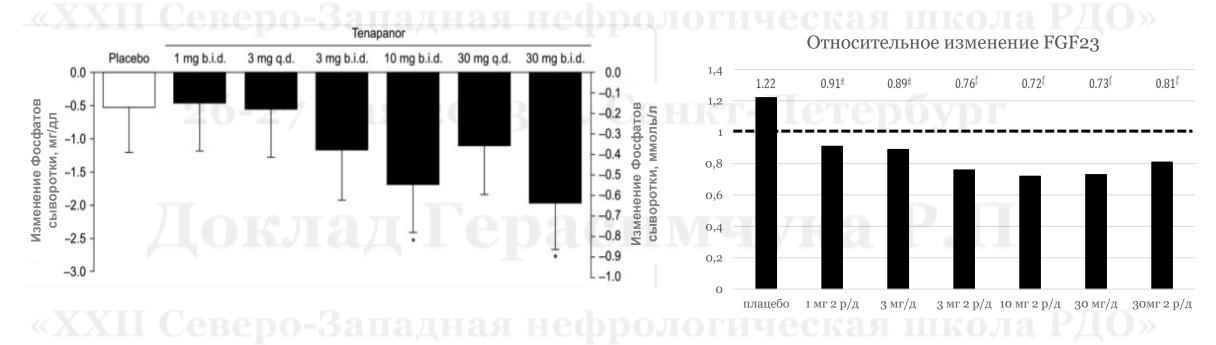

Локализация транспортеров фосфора	Транспортеры, осуществляющие реабсорбцию фосфора	Ингибиторы локальных транспортеров фосфора		
ЖКТ: тонкий	Na*/H+-противопереносчик _; изоформа NHE3	тенапанора гидрохлорид		
кишечник	Na/Pi-llb	панингибитор EOS789		
	Pit-1, Pit-2	панингибитор EOS789		
		P F		



Тенапанор Фаза 1, Здоровые добровольцы

Молекула с минимальной системной доступностью (локального действия)

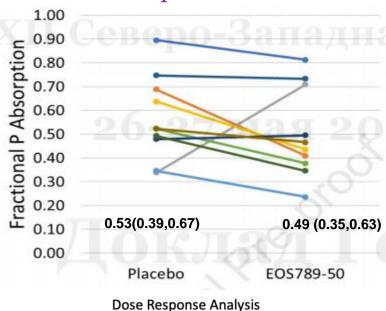
- Замедляет абсорбцию натрия и жидкости
- Снижает парацеллюлярный транспорт фосфатов

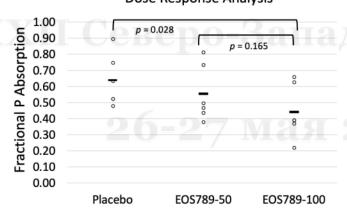


0,8 - 8,0 ммоль/сут ЭКВ 25- 250 МГ

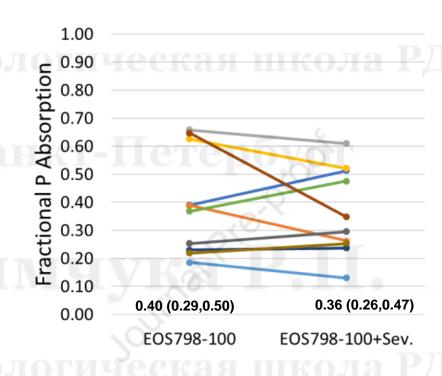
Susanne Johansson et al. Clin Exp Nephrol. 2017

Тенапанор у пациентов на ГД


162 пациента 4 недели приема после отмывки на фоне контролируемой диеты

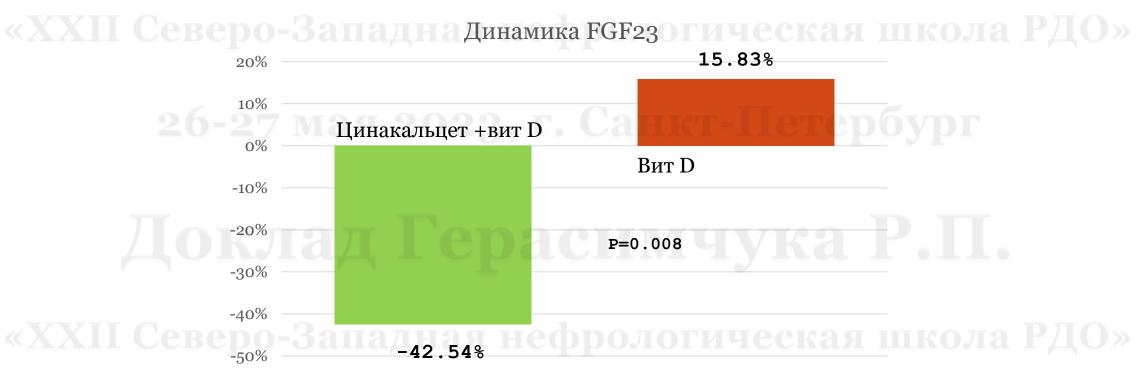


- Дозозависимое снижение фосфатов до 0,6 (0,4 в сравнении с плацебо) ммоль/л
- Дозозависимое снижение FGF23 при исходных значимых колебаниях


EOS789 ингибитор трансцеллюлярного транспорта (NaPi2b, Pit-1, Pit-2)

Панингибитор EOS789 снижает абсорбцию фосфатов в кишечнике в дозозависимом варианте

... может использоваться в комбинации с севеламером с суммированием эффекта



+ Дозозависимое снижение $\Pi T \Gamma$, FGF23

Кальцимиметики и FGF23

Цинакальцет

RCT, 66 пациентов, 4 мес.

26-27 мая 2023, г. Санкт-Петербург

Влияние этелкальцетида на уровень ФРФ-23

Плацебо-контролируемые исследования

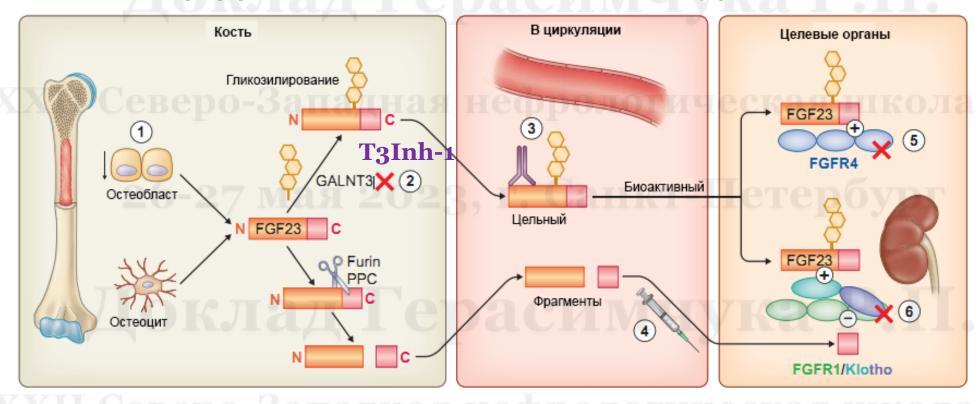
Прямое сравнительное исследование

Медиана
процентного-56,1
(-84,7, -7,1)2,1
(-40,1, 64,8)

Медиана
процентного
изменения (Q1, Q3)-68,4
(-87,3, -26,3)-41,4
(-75,7, 24,8)

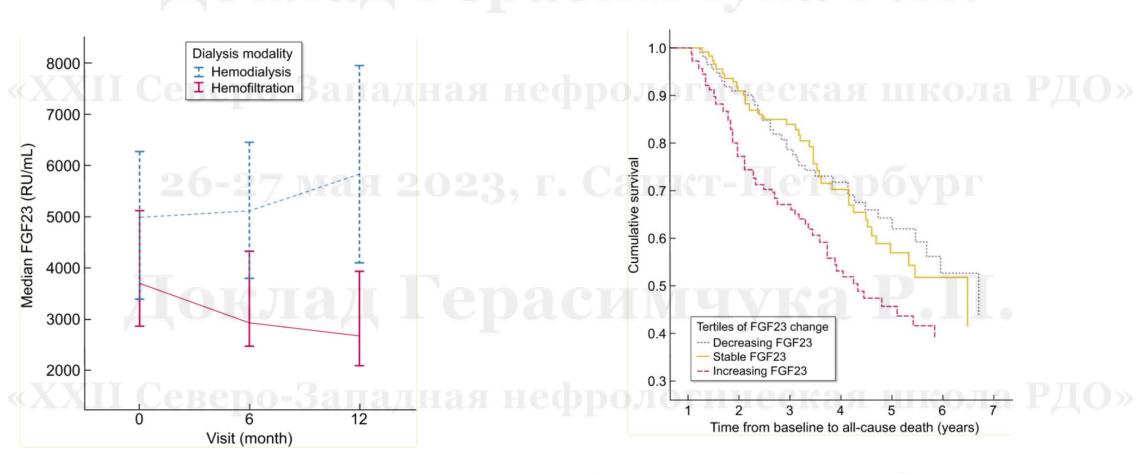
Доклад Герасимчука Р.П.

«XXII Северо-Западная нефрологическая школа РДО»

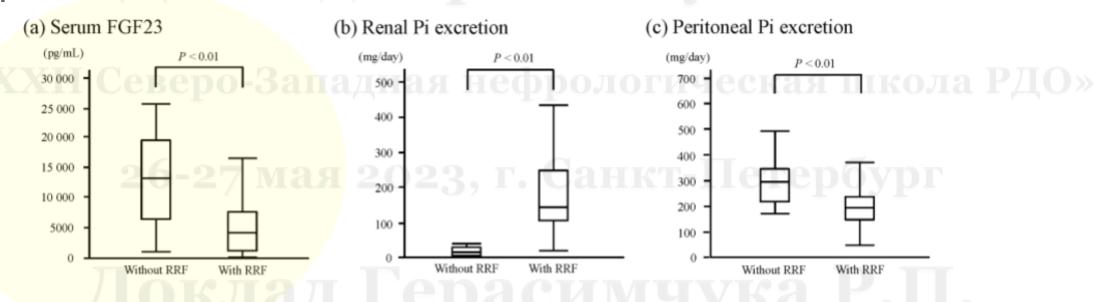

Ускорение выведения — Петербург

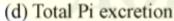
Ускорение расщепления/ блокада гликозилирования
Значение модальности диализа
Значение остаточной функции почек

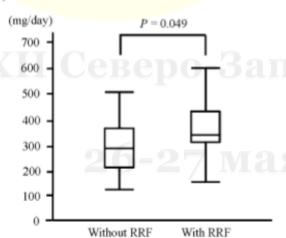
«XXII Северо-Западная нефрологическая школа РДО»


26-27 мая 2023, г. Санкт-Петербург

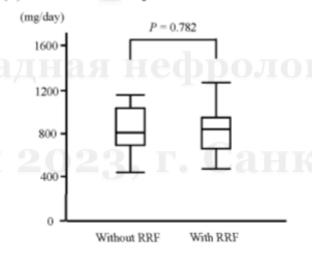
Ингибитор ppGalNAc-T3 для снижения уровня FGF23


- В культуре клеток он противостоял повышенной инвазивности раковых клеток, вызванной активацией ppGalNAc-T3, что позволяет предположить, что ингибитор может препятствовать образованию метастазов.
- В клетках и у мышей он блокировал ppGalNAc-T3-опосредованную гликанмаскировку FGF23, тем самым увеличивая его расщепление, что является возможным методом лечения при ХБП.


FGF23 и модальность диализа



26-27 мая 2023, г. Санкт-Петербурі


Влияние остаточной функции почек на удаление фосфатов и уровень FGF23

(e) Estimated daily Pi intake

Yamada S. et al. Therapeutic Apheresis and Dialysis, 2014

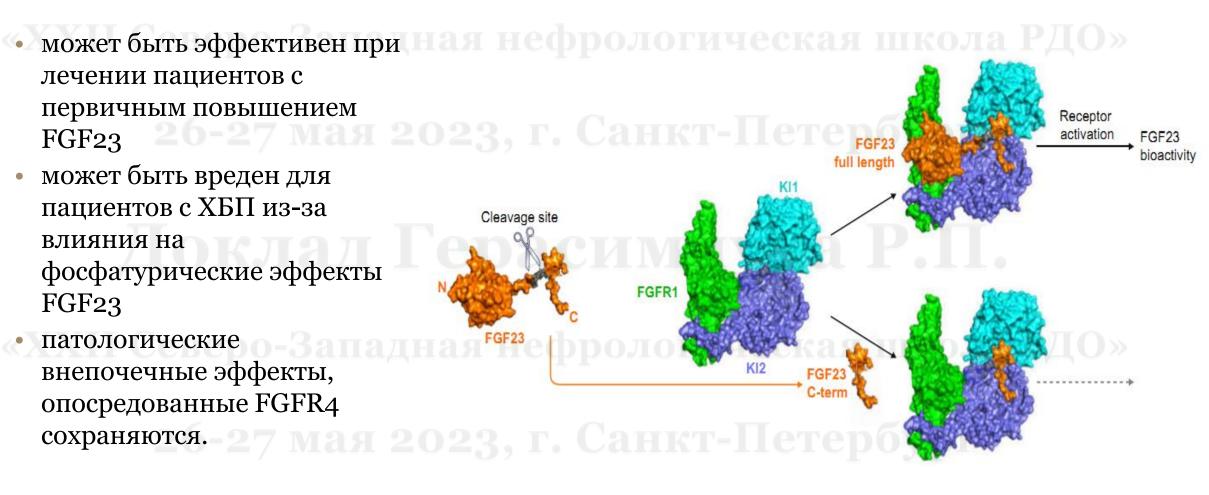
Антитела, нейтрализующие FGF23

- эффект «аннигиляции», а не контроля
- при ХБП такой подход может быть вреден, особенно на ранних стадиях

НО

• **Буросумаб** эффективен у пациентов с наследственной гипофосфатемией (повышал реабсорбцию фосфатов, нормализовал уровень фосфора, повышал уровень кальцитриола)

Панингибитор FGFR

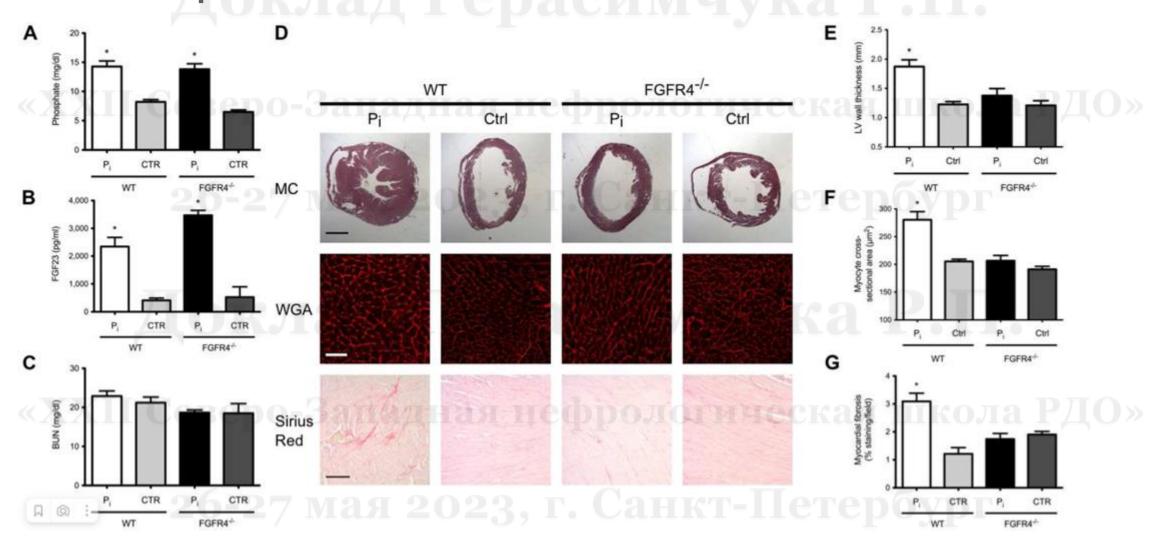

- нацелен на сайты связывания АТФ доменов тирозинкиназы всех подтипов FGFR
- Не применялся у пациентов с ХБП
- На моделях ХБП у грызунов эти ингибиторы ослабляли и даже обращали индуцированную FGF23 ГЛЖ
- Недостаточно исследований по изучению внесистемных эффектов (в частности вследствие воздействия на FGFR2 и FGFR3)

Sham or 5/6 Nx Pre-treatment Post-treatment 2 weeks 3 weeks-treatment 1st ECHO 2nd ECHO (A and G) Heart weight/tibia length (C) Myocyte cross-sectional area (D) Gene profile (E) Myocardial fibrosis (F) — Nx-PD173074 LVM (mg) ne expression rol-fold change) -O- Sham-PD173074 ■ Nx-NaCl Nx-PD173074 aMHC BMHC ANP BNP Post

Di Marco GS et al. Nephrol Dial Transplant 2014; 29: 2028–2035

Специфический FGFR1-Klotho блокирующий пептид

- лечении пациентов с
- может быть вреден для пациентов с ХБП из-за влияния на фосфатурические эффекты FGF23
- патологические _____ FGF23 внепочечные эффекты, опосредованные FGFR4



Блокаторы FGFR4 ерасимчука Р.П.

- Блокируют внесистемные эффекты (ГЛЖ, индуцированную гепатоцитами продукцию цитокинов)
- Сохраняют системные эффекты, связанные с регуляцией обмена фосфатов
- Эффективный подход для пациентов в том числе с ранними стадиями ХБП
- Не подходит для заболеваний с первичным повышением продукции FGF23

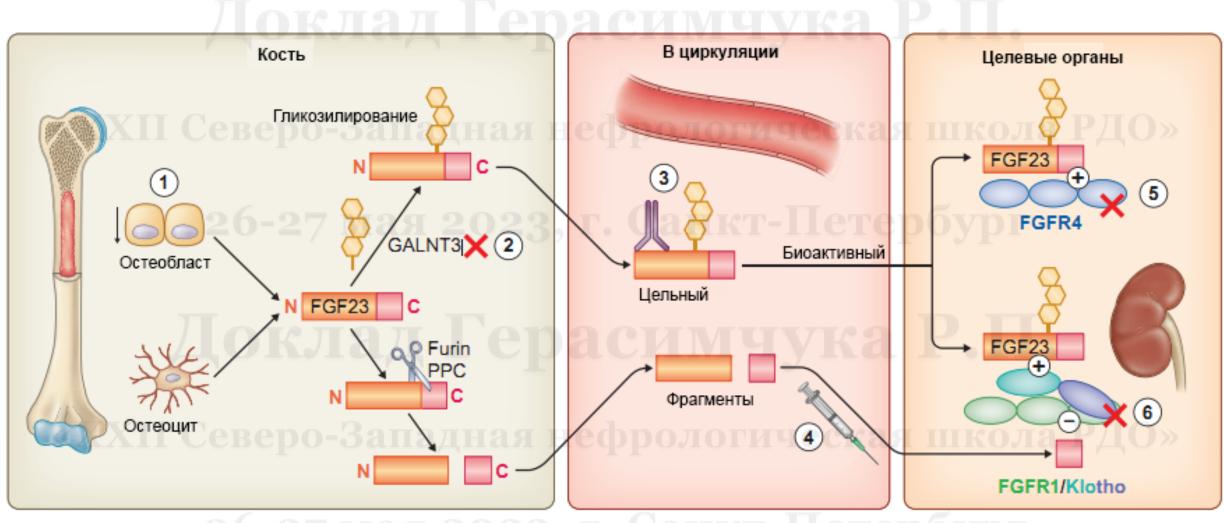
26-27 мая 2023, г. Санкт-Петербург

Блокаторы FGFR4

Grabner A et al. Cell Metab 2015; 22: 1020–1032

Препараты активной формы витамина D и FGF23

- Снижают экспрессию рецепторов FGFR4
- Могут замедлять FGFR4 опосредованное развитие ГЛЖ
- Повышают продукцию FGF23
- Для оптимального воздействия на нецелевые эффекты FGF23 целесообразна комбинация с препаратами, блокирующими FGFR


Ингибиторы АПФ, БРА

Потенциальный механизм действия:

- Повышение продукции Клото, в том числе растворимого
- Клото опосредованное замедление передачи сигнала FGFR4
- Снижение выраженности нецелевых эффектов FGF23
- Подтверждено на моделях животных, но не выявлено значимых эффектов в клинических исследованиях

Выводы оклад Герасимчука Р.П.

- В доступе имеются несколько различных подходов к снижению активности FGF23
- Вмешательства со снижением FGF23 с имеющимися данными анализа отдаленных результатов указывают на их улучшение (диета, бескальциевые ФСП, кальцимиметики)
- В отличие от анигилляции FGF23 моноклональными антителами использование блокаторов FGFR позволяет осуществлять контролируемое снижение эффектов FGF23
- Использование FGFR1-Klotho блокирующего пептида и панингибитора FGFR перспективно в плане лечения состояний с первичной гиперпродукций FGF23 (гипофосфатемический рахит)
- Использование ингибитора FGFR4 перспективно для снижения нецелевых эффектов FGF23 при ХБП
- Необходимы исслеедования клинической эффективности и безопасности применение новых подходов снижения активности FGF23 , в том числе сочетаний препаратов

26-27 мая 2023, г. Санкт-Петербурі