

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова

Гистологические и молекулярные особенности костного обмена на ранних стадиях экспериментальной ХБП

Богданова Евдокия Олеговна, к.биол.н.

н.с. лаборатории биохимического гомеостаза НИИ нефрологии НКИЦ

«XXII Северо-Западная нефрологическая школа РДО»

27 мая 2023 Санкт-Петербург

Сердечнососудистые события являются преобладающей причиной смерти пациентов с ХБП, в том числе С1-3

KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease

Смертность от сердечно-сосудистых (СС) событий на разных стадиях ХБП

Смертность vs онкология vs СС

ugust 2013, Pages 339-352

24.4

48.8

Stage 4

25.9

41.1

Stage 3B

eGFR stages

CC3

34.5

7.5

58.0

Stage 5

or RRT

THE LANCET

события (%) при ХБП

28.1

32.9

Stage 3A

Рак

27.5

Stage 1–2

Proportion of patients (%)

70-

60-

50

«XXII Северо-Западная нефрологическа

Совместно с ремоделированием миокарда и сосудистой кальцификацией, ХБП ассоциирована с прогрессированием изменений скелета

В фокусе сегодняшнего доклада – костный ответ на ранних стадиях экспериментальной ХБП

Регуляторная ось почка/скелет при МКН-ХБП

Magnusson P, Kidney Int 2001

Malluche HH, Kidney Int 1976

Tasnim N, Cureus 2021

Nickolas TL, J Bone Miner Res 2013

Coen G, Nephrol Dial Transplant 1996

* Sabbagh Y, J Bone Miner Res 2012

Fang Y, J Am Soc Nephrol 2014

Carrillo-López N, Calcif Tissue Int 2021

Iwasaki-Ishizuka Y, Nephrol Dial Transplant 2005

Ferreira JC, PLoS One 2013

Barreto FC, J Bras Nefrol 2014 Graciolli FG, Kidney Int 2017 Misof BM, J Musculoskelet Neuronal Interact 2019 Ha SW, ACS Appl Mater Interfaces,2017 Bon N, J Biol Chem, 2018

Модели костных нарушений при ХБП

Источник	Модель (эквивалент стадии ХБП)	Экспериментальное воздействие	Животное	Срок эксперимента, недели	Статические/ динамические параметры	Фосфат, ПТГ, FGF23	Костный обмен
lwasaki-Ishizuka et al., 2005	1/2 Nx (C2) 3/4 Nx (C3) 5/6 Nx (C3–4)	ТРТх + инфузия ПТГ	Крыса (Спрег- Доули)	10	+/+	Pi↔ PTH↔ FGF23?	Низкий — во всех моделях снижена скорость образования костей (BFR), параметры остеокластов у 5/6Nx
Mathew et al., 2007	LDLr ^{_/_} (C3)	Nx (электрокоагуляция), диета с высоким содержанием жиров	Мышь	10	FI(0 _{+/+} 5(0	Pi↑ PTH↑ FGF23?	Низкий – снижена BFR, количество остеобластов
Moe et al., 2009	Су/+ (кистоз) (С3–4)	Диета с 0,2 и 0,7% фосфата	Крыса	14	+/+	Pi↑ PTH↑ FGF23↑	Высокий (0,7% Рі) — увеличены значения параметров остеобластов, остеокластов, фиброз
Nikolov et al., 2010	ApoE ^{_/_} vs. WT (C3–4)	зверо-запа	Мышь	8	+/+	Pi↔ PTH↔ FGF23?	При ХБП костная масс и объем трабекулярной кости выше, чем у дикого типа
Sabbagh et al., 2012	Jck (кистоз) (C2–5)	26-27 мая	Мышь	20	+/+	Pi↑ PTH↑ FGF23↑	Высокий – повышены BFR, минерализация, трабекулярная кость, количество остеобластов
Stubbs et al., 2012	Col4a3 ^{+/+} FGF23 ^{+/eGFP} (C3)	-	Мышь	12	+/-	Pi↑ PTH↑ FGF23↑	Высокий – повышены параметры резорбции
Ferreira et al., 2013	5/6 Nx (C3–4)	ТРТх + инфузия ПТГ Диета с 0,6 и 1,2% фосфата	Крыса (Вистар)	8	+/+	Pi∱ PTH↓ FGF23↓	Низкий – снижена BFR и объем кости, апоптоз остеобластов и остеоцитов, снижены показатели остеобластов и остеокластов
Fang et al., 2014	LDLr ^{_/_} (C2-3)	Nx, диета с высоким содержанием жиров	Мышь	16	+/+	Pi∱ PTH↔ FGF23↑	Низкий — снижена BFR; снижен объем трабекулярной кости и толщина трабекул
Fang et al., 2014	LDLr ^{-/-} (C2-3)	Nx, диета с высоким содержанием жиров	Мышь	He10po	ЛО#/+1ЧЕ	Pi↑ PTH↔ FGF23↑	Низкий — снижена BFR, объем остеоида, количество остеобластов и остеокластов
Liao et al., 2019	5/6 Nx (C3)	26.27.000	Крыса (Спрег- Доули)	8	+/+	Pi↑ PTH↔ FGF23↑	Высокий – повышены BFR, минерализация,
Hsu et al., 2022	0.2% аденин C57BL/6 (C3)	20-27 Max	Д 	5, I. Ca	4 HIKI - II +/+	Pi _↑ PTH _↑ FGF23 _↑	Низкий - снижен объем трабекулярной кости и толщина трабекул

Гистологические характеристики костного обмена у пациентов

400>

Miller P. Bone Res (2014)

Jørgensen H.S. Bone 2021: Contents lists available at ScienceDirect Bone **FLSEVIER** journal homepage: www.elsevier.com/locate/ Full Length Article Static histomorphometry allows for a diagnosis of bone turnover in renal osteodystrophy in the absence of tetracycline labels Hanne Skou Jørgensen^{a, b}, Geert Behets^c, Liesbeth Viaene^d, Bert Bammens^{a, e}, Kathleen Claes^{a,e}, Bjorn Meijers^{a,e}, Maarten Naesens^{a,e}, Ben Sprangers^{a,e}, Dirk Kuypers^{a,e}, Patrick C. D'Haese^c, Pieter Evenepoel^{a,e,*} * Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium b Department of Kidney Diseases, Aarhus University Hospital, Aarhus, Denmark ^c Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium d Department of Nephrology, Az Groeninge, Kortrijk, Belgium e Department of Medicine, Division of Nephrology, University Hospitals Leuven, Belgium ARTICLE INFO ABSTRACT Keywords: A bone biopsy with prior tetracycline labeling is the gold standard to diagnose renal osteodystrophy. In cases of Bone histomorphometry missing tetracycline labels, it is still paramount to gain clinically relevant information from the extracted bone Chronic kidney disease - mineral and bone sample, by evaluating the static histomorphometry. This study investigates the diagnostic performance of static disorder histomorphometry for the evaluation of high and low bone turnover. Transiliac bone biopsies taken pre- or post-Chronic kidney disease kidney transplantation, of sufficient quality for a full histomorphometric analysis were included (n = 205). The Kidney transplantation cohort was randomly split to provide separate exploration and validation subsets. Diagnostic performance was evaluated by area under the receiver operator characteristics curve (AUC). All histomorphometric parameters were significantly different across categories of low (24%), normal (60%), and high (16%) bone turnover, and all were significant predictors of both high and low bone turnover (AUC 0.71-0.84). Diagnostic performance was very good for high turnover, as a combination of static parameter multad in a values (NPV and PPV) of 80% and 96%, respectively. For low t Низкообменные состояния 71% and NPV of 82%. We conclude that in the absence of tetrac acceptable alternative for a diagnosis of bone test. can Osteoic No Адинамическая кость Osteoclasts (adynamic bone disorder) 25X 25X von Kossa H&E TRAP Low MAR Flat Bone

Lining Cells

Chavassieux P. Frontiers in Endocrinology (2022)

H.S. Jørgensen et al.

Table 1

Bone histomorphometric variables of remodeling across categories of bone

turnover.				
30N	Low (n = 49)	Normal (<i>n</i> = 123)	High (n = 33)	р
Bone formation rate, µm²/mm²/day	31 (1; 52) [†]	209 (137; 379)	830 (606; 1176) [↑]	<0.001
Adjusted apposition rate, µm/day	0.1 (0.0; 0.3) [†]	0.3 (0.2; 0.6)	0.6 (0.4; 1.3) [↑]	<0.001
Mineralization lag time, days	80 (24; 139) [↑]	27 (14; 46)	15 (9; 27)	<0.001
Mineral apposition rate, µm/day	0.6 (0.5; 0.9) [↑]	0.8 (0.7; 1.0)	1.1 (0.9; 1.4) [↑]	<0.001
Osteoid/bone area, %	0.9 (0.4; 2.0) [↑]	2.8 (1.3; 5.5)	5.4 (3.4; 10.4) [↑]	< 0.001
Osteoid/bone perimeter, %	9.3 (4.6; 19.9) [↑]	22.4 (12.1; 39.1)	43.4 (23.3; 56.3) [↑]	<0.001
Osteoid width, µm	5.5 (4.8; 6.5) [↑]	8.3 (6.4; 10.5)	10.7 (8.0; 13.6) [↑]	<0.001
Fibrosis, any, n (%)	1 (2.0)	12 (9.8)	25 (75.8)	< 0.001
Fibrosis >5%, n (%)	0 (0.0)	3 (2.4)	15 (45.5)	< 0.001
Eroded/bone perimeter, %	1.3 (0.6; 2.6) [†]	3.3 (1.3; 6.0)	6.9 (4.7; 11.1) [↑]	<0.001
Osteoblast/bone perimeter, %	0.6 (0.0; 1.7) [↑]	3.0 (0.5; 10.2)	12.2 (5.9; 27.3) [↑]	<0.001
Osteoblast/osteoid perimeter, %	7.0 (0.0; 18.1) [↑]	16.7 (0.0; 33.4)	33.3 (23.9; 54.7) [↑]	<0.001
Osteoclast/bone perimeter, %	$0.0 (0.0; 0.7)^{\uparrow}$	0.5 (0.0; 1.5)	2.0(1.1; $3.0)^{\uparrow}$	<0.001
Osteoclast/eroded perimeter, %	0.0 (0.0; 32.1)	18.3 (0.0; 30.7)	28.8 (16.9; 34.4) [†]	0.005

Data are median (IQR) with n by the Kruskal-Wallis equality-of-populations rank

[†] p < 0.05 compared to the "Normal" category.

Состояния с высоким обменом

Молекулярные механизмы регуляции костного обмена

Предсказанные взаимодействия между продуктами генов-регуляторов костного обмена

Name bone biosynthesis, bone formation, osteogenesis

Bogdanova E. et al. IJMS 2023

(RANKL), Lgr4 - leucine-rich repeat-containing G protein-coupled receptor 4, Sp7 - Sp7 transcription factor (osterix), Bmp4 - bone morphogenetic protein 4,

Dmp1 - dentin matrix acidic phosphoprotein 1, Gapdh - glyceraldehyde-3-phosphate dehydrogenase

Модели ХБП и контрольные группы

26-27 мая 2023*,* г. Санкт-Петербург

Полученные модели хронической дисфункции почек соответствовали ХБП С1-2

26-27 мая 2023, г. Санкт-Петербур

Nx2

WKY2

SO2

— Median 🔲 25%-75% 📜 Non-Outlier Range 🔺 Raw Data

SO6

Nx6

Неорганический фосфат и его регуляторы в полученных моделях

Полученные модели хронической дисфункции почек соответствовали ХБП С1-2

Исследуемые параметры	SO2	SO6	Nx2	Nx6
Систолическое артериальное давление, мм рт. ст.	۲	1	1	1
Клиренс креатинина, мл/мин/100г	фрс⇔оги	чес⇔ая	↓29%	Д↓29%
Альбуминурия, мг/мг креатинина	\leftrightarrow	x6	x8	x12
Интерстициальный фиброз почки, %	∙Сңкт	−П⇔ер	10%	20%
Klotho в сыворотке, пг/мл	\leftrightarrow	\checkmark	\checkmark	\checkmark
Фосфат в сыворотке, ммоль/л	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
Экскреция фосфата, мг/мг креатинина	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Интактный паратиреоидный гормон, пг/мл	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Интактный фактор роста фибробластов 23, пг/мл	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow

Стадии, эквивалентные ХБП С1-2 до повышения уровней FGF23, РТН

Представлены различия - SO2 vs WKY2, SO6-Nx6 vs SO2

Гистологические и молекулярные

исследования кости

26-27 мая 2023. г. Санкт-Петербург

1) Гистоморфометрия кости

Площадь трабекулярной кости (B.Ar%T.Ar) – среднее значение площади для трех оцифрованных стеклопрепаратов для каждого животного; количество измерений всего N=96, n=8 для группы

Количество активных остеобластов (N.Ob/ B.Pm) — в 10 полях зрения для одного гистопрепарата от каждого животного; количество измерений всего N=320, n=80 для каждой группы

Количество остеоцитов (N.Ot/T.Ar) - количество измерений всего N=261, n(SO2)=72, n(SO6)=74, n(Nx2)=73, n(Nx6)=72 Количество остеоклатосв (N.Oc/B.Pm) - количество измерений всего N=299, (SO2)=74, n(SO6)=76, n(Nx2)=72, n(Nx6)=77 Периметр резорбции (E.Pm%B.Pm) - количество измерений всего N=320, n=80 для группы

26-27 мая 2023, г. Санкт-Петербург

2) Иммуногистохимия кости

Proportion of Dickkopf-1-positive Ot (N.Ot^{Dkk1+}/N.Ot) - N=160, n=40 for each group Proportion of Sclerostin-positive Ot (N.Ot^{Sost+}/N.Ot) - N=160, n=40 for each group

«XXII Северо-Западная нефрологическая школа РДО»

Для показателей N.Ob/ B.Pm, N.Ot/T.Ar, N.Oc/B.Pm, E.Pm/B.Pm N.OtDkk1+/N.Ot, N.OtSost+/N.Ot, значения каждого поля зрения были использованы для статистических тестов

1 - Histomorphometry in Rodents. Bone Research Protocols. Methods in Molecular Biology (2019)

2 - Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee

Измерение количества активных остеобластов:

«ХХІ Севе Количество остеобластов = N.Ob/B.Pm (no/mm)

N.Ob – количество активных остеобластов на поверхности балки; B.Pm – периметр поверхности костной балки

Анализ изображений выполняли с использованием Orbit Image Analysis Version 3.64

Количество активных остеобластов и экспрессия генов дифференцировки ниже в моделях ХБП

Количество остеобластов в метафизе (N.Ob/B.Pm, no/mm; N=320, n=80 для каждой группы)

Регуляция дифференцировки остеобластов

А – экспрессия в хряще, В – экспрессия в костном мозге и эндотелии сосудов, С – экспрессия в остеоцитах диафиза

Экспрессия Dickkopf-1 в остеоцитах и концентрация в сыворотке повышаются в моделях ранней ХБП

Экспрессия склеростина в остеоцитах и концентрация в сыворотке повышаются в моделях ранней ХБП

Измерение количества остеоцитов:

Т.Ar – площадь костной ткани

Анализ изображений выполняли с использованием Cell profiler, Orbit Image Analysis Version 3.64

Модели ХБП С1-2 характеризовались сниженным количеством остеоцитов

*p<0.010 vs SO6, Nx2, Nx6

Роль Dmp-1 в регуляции остеоцитов

Dussold C. et al., Bone Res 2019

Dussold C. et al., Bone Res 2019

Wnt10b

Sfrp2

Измерение площади трабекуляроной кости:

лад богдановой с.О

Количество остеоцитов = B.Ar/ T.Ar (%)

«XXII Север В.Ar – площадь трабекулярной кости ческая школа РДО» Т.Ar – площадь костной ткани

Наложение масок выполнено в программе анализа изображений Orbit Image Analysis Version 3.64

Площадь трабекулярной кости снижена в моделях ХБП С1-2

Площадь трабекулярной кости (B.Ar%T.Ar; N=96, n=8 для каждой группы)

26-27 мая 2023, г. Санкт-Петербург

Регуляция дифференцировки остеокластов

Количество остеокластов не различалось в моделях начальной ХБП и контроле

Количество остеокластов (N.Oc/B.Pm, no/mm; N=299, n(SO2)=74, n(SO6)=76, n(Nx2)=72, n(Nx6)=77) и репрезентативные микрофотографии (H&E), анализа изображений выполнен с использованием Orbit Image Analysis Version 3.64

Измерение периметра резорбции:

Периметр участков резорбции

Периметр кости

Периметр резорбции = E.Pm/ B.Pm (%)

E.Pm – периметр резорбции B.Pm – периметр поверхности костных балочек, периметр трабекулярной кости

Анализ изображений выполнен в Orbit Image Analysis Version 3.64

Периметр резорбции ниже в модели Nx6

Периметр резорбции (E.Pm%B.Pm; N=400, n=80 для каждой группы);

26-27 мая 2023*,* г. Санкт-Петербург

Неорганический фосфат как сигнал?

6-21 Лая 2023, г. Санкт-Петербург

Предполагаемый механизм сигнальной трансдукции

Bon N. et al. 2018:
1) PiT1/PiT2 связаны с ERK1/2
2) оба PiT1 и PiT2 необходимы для передачи сигнала Pi
3) связывание Pi с PiT (а не транспорт Pi), может быть ключевым событием в передаче сигналов Pi

Michigami et al., 2018 Beck et al., 2020

26-27 мая 2023, г. Санкт-Петербург

Влияние внеклеточного фосфата на дифференцировку остеобластов и профили

экспрессии генов

Схематическая диаграмма трех основных стадий дифференцировки остеобластов и генов, регулируемых фосфатом согласно George R. Beck, Jr. (2003)

0	7	14	21
Proliferatio	n //	Matrix	vesicle release
	Matrix ve Extracelluar Matrix De	sicle formation	Mineralization
	Col-1ALP	26-27 M	
		BSP	
		OPN	
			OSC

Пролиферация -> формирование матрикса-> минерализация

Ранние 🗲 поздние гены

Early	L-link	AVG	Delayed	L-link	AVG	Intermed.	L-link	AVG	Late	L-link	AVG
Egr3	13655	13.0	Ereg	13874	14.4	Egr3	13655	12.4	Spp1	20750	11.1
Egrl	13653	12.2	Serpine1	18787	14.0	Egrl	13653	8.9	Itga6	16403	9.1
Nr4a1	15370	10.8	IIrl1	17082	9.0	Hmga2	15364	8.3	Hmga2	15364	8.8
Btg2	12227	7.8	Ctgf	14219	7.8	Prkg2	19092	6.5	Sek	20393	7.6
Eer2	13654	6.8	Jer3	15937	7.1	Dusp6	67603	63	Slc20a1	20515	6.5
Nxph1	18231	6.7	Sgk	20393	6.7	Sgk	20393	5.7	Dmp1	13406	6.3
Fos	14281	6.6	F3	14066	6.6	Spp1	20750	5.7	Green	23892	5.7
Ier3	15937	6.1	Timp1	21857	6.6	Itga6	16403	5.5	Hmgal	15361	5.5
Serpine1	18787	6.0	Dusp6	67603	6.1	Klf10	21847	5.3	Prkg2	19092	53
Cvr61	16007	5.1	ler5	15939	5.7	Timp1	21857	5.2	Fut8	53618	5.0
Slamf6	30925	4.5	Odc1	18263	4.9	Ereg	13874	5.0	Timp1	21857	4.7
Rttn	246102	4.3	Egr2	13654	4.3	Foxc2	14234	4.9	Rasa1	218397	4.7
Sek	20393	4.3	Ptgs2	19225	4.3	Hmgal	15361	4.4	Dusp6	67603	4.6
lfner1	15979	39	Hbegf	15200	4.0	Jer3	15937	43	Ank	11732	4.5
Ptos?	19225	3.4	Tnfrsf12a	27279	4.0	Foxm2	14235	37	Anxal	16952	43
Fgfr1op2	67529	3.3	Nxph1	18231	3.9	Csfl	12977	3.4	Bdnf	12064	4.2
Akp5	11650	3.3	Itga6	16403	3.9	Pcna	18538	3.3	IIIrl1	17082	4.0
Ctgf	14219	3.3	Prkg2	19092	3.9	Breal	12189	3.2	Ereg	13874	3.6
Slc24a2	76376	3.0	Btg2	12227	3.8	Rasal	218397	3.2	Lbh	77889	3.4
Zfn36	22695	3.0	Vegfa	ND	3.6	Cdc20	107995	3.2	Eer3	13655	33
Folr2	14276	2.9	Fosl2	14284	3.4	Cdc6	23834	3.0	Egr1	13653	33
Dusp6	67603	2.9	Cyrfil	16007	3.0	Odc1	18263	3.0	Mmp13	17386	2.9
Gnas	14683	2.8	Slc20a1	20515	2.9	E2fl	13555	3.0	Csfl	12977	2.9
PhIda1	Phida1	2.8	Dusnl	19252	2.8	Cenh2	12442	2.8	Hat	15234	2.8
Dakz	104418	2.0	Srf	20807	2.0	Ler5	15939	2.0	Odc1	18263	2.0
Fosl2	14284	2.7	Cef1	12977	2.6	Cenhl	52415	2.0	Egr2	13654	2.7
Csf3	12985	2.6	Ets2	23872	2.6	Runx1	12394	2.6	Infrsf12a	27279	2.7
Sost	74499	2.5	Cavl	12389	2.5	Hes3	15207	2.6	Jer3	15937	2.7
0.11	17082	2.4	Slamf6	30925	2.5	Tnfrsf12a	27279	2.5	Veafa	ND	2.5
Thbe1	21825	2.4	Anval	16952	2.0	Vegfa	ND	2.5	Pena	18538	2.0
laf1	16000	2.4	Sort	74400	2.4	Feml	13601	2.4	Feml	13601	2.7
Srf	20807	2.4	akas	11650	23	Eale	14276	2.4	Prices	18750	2.2
Eaf22	67112	2.5	E2f1	13555	2.3	Sost	74499	2.1	Iml	16971	2.1
Forf4	14175	2.1	Nfe212	18024	2.3	Itab5	16419	2.1	Akan9	13121	2.1
1 214	14175	2.0	MICELE	10024	2.2	ngoo	10415	2.1	74Kap7	13121	2.0
Decrease											+
Hoxe12	15421	0.2	Myo6	17920	03	Slco1a4	28250	0.2	Mest	17294	0.2
Traf6	22034	0.3	Rbbn4	19646	0.3	Ikbkg	16151	0.2	Nont	114249	0.2
Slc4a4	54403	0.3	Csfr1	12978	0.4	Rbbn4	19646	0.2	Asnn	66336	0.3
Aan7	11832	0.3	F2rl3	14065	0.4	Myo6	17920	0.3	Ogn	18295	0.3
Ptofm	19221	0.3	Tnfsf18	240873	0.4	Traff	22034	0.3	Neald	52589	0.3
Rbbp4	19646	0.3	Svt1	20979	0.4	Vlrc24	171197	0.3	Den	13179	0.3
Uts2	24111	0.3	Csnkle	27373	0.4	Aspn	66336	0.3	Camk1g	215303	0.3
Cart1	216285	0.3	V1rc24	171197	0.4	Fabris	16592	0.3	Ennen	13809	0.3
Pth	19226	0.3	Apoc3	11814	0.4	Ogn	18295	0.4	Emod	14264	0.4
Tef2	21410	0.4	Ptafrn	19221	0.5	Ibsn	15891	0.4	Fafr2	14183	0.4
Febra Fabra	16502	0.4	1121	16107	0.5	Nont	11/2/0	0.4	1912	21925	0.4
Cefr1	12978	0.4	Irfl	16362	0.5	Pth	19226	0.4	Cacnb2	12296	0.4
Creb1	12910	0.4	Clan	12745	0.5	Acm7	11832	0.4	Postn	50706	0.4
Bel2	12912	0.4	Tre4	217160	0.5	Tef2	21410	0.4	Rmp4	12150	0.4
lben	15891	0.4	Ace	11421	0.5	Cefr1	12078	0.5	C 12	12139	0.4
iusp 117e	15091	0.5	Deb	10226	0.5	Muff	12978	0.5	Callal	12024	0.5
11/F	10197	0.5	rm	19220	0.5	Myro	1/8/8	0.5	Conar	12892	0.5

L-Link: Locus Link, AVG: average ratio across time points, ND=No data

 $\mathbf{1}$

Влияние внеклеточного фосфата на дифференцировку остеобластов и профили экспрессии генов

26-27 мая 2023, г. Санкт-Петербург

Ранняя ХБП характеризуется подавлением генов, связанных с транспортом и сигналингом Pi в кости

Slc20a1, solute carrier family 20 member 1, *Slc20a2*, solute carrier family 20 member 2, *Xpr1*, xenotropic and polytropic retrovirus receptor 1, *Ankh*, ANKH pyrophosphate transport regulator, *Fgfr2*, fibroblast growth factor receptor 2, *Mapk3*, mitogen activated protein kinase 3, *Mapk1*, mitogen activated protein kinase 1

Гистологические и молекулярные изменения костной ткани пропорциональны степени хронического повреждения почек при ранней ХБП

Гистоморфометрия кости XII Сев	SO6 еро-Западн ж нео		Nx6
Трабекулярная кость	↓	→	\checkmark
Остеоциты 🧹	o-z/ maą zuzs, r.	санкт-цетероур	\checkmark
Активные остеобласты	\leftrightarrow	\checkmark	\checkmark
Периметр резорбции	\leftrightarrow	\leftrightarrow	\checkmark
Остеокласты			\leftrightarrow
Профиль экспрессии Генов Sp7, Ctnnb1, Bmp4, Vdr, Slc20a1, Slc20a2, Xpr1, Ankh, Fgfr2, Mapk1/3	еро-3ап <mark></mark> дная не¢ 6-27 мая 2023, г.	орологич € ская шко Санкт-Петербур	ла РДО» ↓)Г

Заключение:

ХБП С1-2

Альбуминурия \uparrow x6-12 Кlotho в сыворотке \checkmark Интерстициальный фиброз почек \uparrow <30% Клиренс креатинина \checkmark <30% Фосфат в сыворотке $\leftrightarrow \uparrow$ FGF23 \leftrightarrow PTH \leftrightarrow Dickkopf-1 в сыв $\leftrightarrow \uparrow$ Sclerostin в сыв $\leftrightarrow \uparrow$ Костный обмен↓ • Остеоциты↓

- Активные
- остеобласты↓
- Трабекулярная кость↓
- Периметр
 - резорбции↓

Экспрессия генов↓
 Остеобластогенез

- Транспорт фосфата
- Сигнальная трансдукция

Dkk1+ и Sost+ остеоциты ↔↑ Бета-катенин *(Ctnnb1)*↓ При моделировании ранней ХБП, ответ скелета проявляется гистологическими признаками, предполагающими более низкий костный обмен (депопуляция остеоцитов и остеобластов, снижение площади трабекулярной кости)

2 – Изменения гистологии сопровождаются подавлением экспрессии ряда генов, что может быть молекулярной основой сниженного остеосинтеза

Санкт-Петербург

3 – Снижение экспрессии β-катенина в кости (*Ctnnb1*), ассоциировано с повышением доли Dkk1- и Sost-позитивных остеоцитов и концентрации Dickkopf-1 и склеростина в сыворотке крови

4 — Клеточный и молекулярный ответ кости пропорционален моделируемой стадии ХБП и возникает до формирования гиперфосфатемии и повышения концентрации традиционных фосфат-регулирующих факторов (РТН, FGF23)

Спасибо за внимание

Работа выполнена при поддержке РОССИЙСКОГО ФОНДА ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ, КНВШ Санкт-Петербурга и неравнодушных коллег — Садыков А.М., Зубина И.М., Семенова Н.Ю., Береснева О.Н., Иванова Г.Т., Добронравов В.А.

Группы исследования

Экспрессия генов

Footnote: \uparrow or \downarrow - statistically significant increase or decline, \leftrightarrow - not significant