КЛИНИЧЕСКИЕ СВИДЕТЕЛЬСТВА УРЕМИЧЕСКОЙ ТОКСИЧНОСТИ

Земченков А.Ю.

Северо-Западный медицинский университет им. И.И.Мечникова

СПб Городской нефрологический центр

Санкт-Петербург, 27 мая 2022

Карбамилирование

«мочевина – нетоксичный продукт»

Johnson et al.(1972) Effects of urea loading in patients with far-advanced renal failure. Mayo Clin. Proc.47, 21–29

введение в диализирующий раствор мочевины

(острый эксперимент у 3 диализных пациентов)

50 ммоль/л в крови – «нетоксично»

60 ммоль/л – «легкая сонливость»

100 ммоль/л – «умеренная симптоматика»

Карбамилирование

Johnson et al.(1972) Effects of urea loading in patients with far-advanced renal failure. Mayo Clin. Proc.47, 21–29

- нарушение кишечного эпителиального барьера с проникновением бактериальных токсинов в кровь
- карбамилирование белков с нарушением их структуры и функции
- карбамилирование липидов низкой плотности и прогрессирование атеросклероза
- почечный фиброз из-за карбамилирования альбумина
- анемия из-за карбамилирования ЭПО

Уремические токсины - 2022

European Uremic Toxin (EUTox) Work Group of the ESAO and endorsed Work Group of the ERA-EDTA

Solutes in database COBO	<u>ъ</u> о-Западная неф			
Solutes by class 27_28	67 (51.54%): Water-soluble			
	33 (25.38%): Protein-bound			
	30 (23.08%): Middle molecule			
Protein-bound solutes above/below 500 Dalton	25 (75.76%): Below 500 Dalton			
above, below 500 Balton	8 (24.24%): Above 500 Dalton			
Total study count	442Пад Земч			
CN study count	172 (1.32 per solute)			
CU study count	270 (2.08 per solute)			
Pathological associations count	75 (0.58 per solute)			
Pathological associations	31 (41.33%): Cardiovascular			
27-28	13 (17,33%): Nephrologic			
	7 (9.33%): Neurologic and CNS			
	5 (6.67%): Oncologic			
	4 (5.33%): Immunologic			

Name		β-2-Microglobulin			
Molecular we	eight	11818			
Group		Peptide			
Class		Middle molecule			
Added		16.09.2009			
Reference		Pubmed: 12675874			
Submitted b	уферен	Vanholder			
Reviewed by Abou Deif					
рроло	огов и				
NORMAL CO	ONCENTRATIONS ((CN)			
Date	Mean (+/-SD) (low	Range - high Range)			
	1.17 (+/-0.40) mg/	'L			
	(1.10-2.40) mg/L				
	1.90 (+/-0.60) mg/L				
Grand mean	1.50 (+/-0.50) (1.1	10-2.40) mg/L			
ANOVA	F(1,45) = 24.87, p	=0.00: Significant differen			
Dispersion	L:1.10, M:1.50, H:2	.40 : A - (Minimal scatter:			

http://www.uremic-toxins.org доступ 27.05.22

Уремические токсины - 2022

= 2019

European Uremic Toxin (EUTox) Work Group of the ESAO and endorsed Work Group of the ERA-EDTA

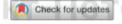
Solutes in database Ce Be	в о-Западная неф			
Solutes by class 97_9	67 (51.54%): Water-soluble			
	33 (25.38%): Protein-bound			
	30 (23.08%): Middle molecule			
Protein-bound solutes above/below 500 Dalton	25 (75.76%): Below 500 Dalton			
above, below 500 balton	8 (24.24%): Above 500 Dalton			
Total study count	442Лад Земч			
CN study count	172 (1.32 per solute)			
CU study count	270 (2.08 per solute)			
Pathological associations count	75 (0.58 per solute)			
Pathological associations	31 (41.33%): Cardiovascular			
27-28	13 (17,33%): Nephrologic			
	7 (9.33%): Neurologic and CNS			
	5 (6.67%): Oncologic			
	4 (5.33%): Immunologic			

Name		β-2-Microglobulin			
Molecular weight		11818			
Group		Peptide			
Class		Middle molecule			
Added		16.09.2009			
Reference		Pubmed: 12675874			
Submitted b	уферен	Vanholder			
Reviewed by	Abou Deif				
рроло	огов и				
NORMAL CO	DNCENTRATIONS	(CN)			
Date	Mean (+/-SD) (low	Range - high Range)			
	1.17 (+/-0.40) mg, (1.10-2.40) mg/L	/L			
08.03.2011	1.90 (+/-0.60) mg/L				
Grand mean	1.50 (+/-0.50) (1.	10-2.40) mg/L			
ANOVA	F(1,45) = 24.87, p	=0.00: Significant differer			
Dispersion	L:1.10, M:1.50, H:2	.40 : A - (Minimal scatter:			

http://www.uremic-toxins.org доступ 27.05.22

Small Water-Soluble Compounds	Protein Bound Compounds	Middle Molecules		
Guanidine compounds	AGEs	Adrenomedullin		
 Guanidinosuccinic acid 	AOPPs	Adiponectin		
-Methylguanidine	CMPF	Angiogenin		
-Guanidine	Cresols	Atrial natriuretic peptide		
Of-Creatine CCUNCKAR	-P-cresyl sulfate	β ₂ -microglobulin		
-Guanidino acetic acid	-P-cresyl glucuronide	β-endorphin		
-γ-Guanidino butyric acid	СНірригаtes ЦИАЦИЕЙ Н	β-lipotropin B		
-ADMA	-Hippuric acid	Cholecystokinin		
«Х-sьма еверо-запа	, , , , ,	Complement factor D		
Oxalate	 O-hydroxy hippuric acid 	Complement factor Ba		
Phenylacetylglutamate / 3 5	Homocysteine	Cystatin C		
Methylamines	Indoles	Interleukin-1β		
-(Mono)methylamine	-Indoxyl sulfate	Interleukin-18		
-Dimethylamine	 Indoxyl glucuronide 	Interleukin-6		
-Trimethylamine	-Kynurenine	Tumor Necrosis Factor-α		
-Trimethylamine-N-Oxide	-Kynurenic acid	Interleukin-8		
Sulfuric compounds	Phenols	Interleukin-10		
-Lanthionine	-Phenyl sulfate	Endothelin		
Myoinositol	-Phenyl acetic acid	FGF-23		
2PY	Quinolinic acid	Ghrelin		
Polyamines ОССИЙСКАЯ I	научно-практичес	Glomerulopressin CHU//		
-Acrolein -Putrescine	с Ассоциа ₁₆ ией Не	Immunoglobulin light chains Lipids and lipoproteins		
«>-Spermine веро=Запа -Spermidine	дная нефрологич	le Lepting школа РДО:		
	2022, г. Санкт	Methionine-enkephalin		
Carbamylated compounds	LUZZ, I. GARKI	Neuropeptide Y		
Cyanate		Orexin A		
Ammonia		Parathyroid hormone		
Uric acid		Pentraxin-3		
Xanthine		Peptide YY		
Hypoxanthine		Prolactin		
		Resistin		
28		Retinol Binding Protein		
		Visfatin 35		

Темы согласительной конференции KDIGO-18


- Group 1: Выбор начальной модальности диализа
- Group 2: Выбор времени старта и подготовка к старту
- Group 3: Подготовка диализного доступа
- Group 4: Оптимальная адекватность диализа и контроль симптомов

www.kidney-international.org

KDIGO executive conclusions

Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

OPEN

Christopher T. Chan¹, Peter J. Blankestijn², Laura M. Dember³, Maurizio Gallieni⁴, David C.H. Harris⁵, Charmaine E. Lok¹, Rajnish Mehrotra⁶, Paul E. Stevens⁷, Angela Yee-Moon Wang⁸, Michael Cheung⁹, David C. Wheeler¹⁰, Wolfgang C. Winkelmayer¹¹ and Carol A. Pollock⁵; for Conference Participants¹²

¹University Health Network, University of Toronto, Ontario, Canada; ²Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; ³Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ⁴Department of Clinical and Biomedical Sciences "Luigi Sacco", University of Milan, Milan, Italy; ⁵University of Sydney, Sydney, NSW, Australia; ⁶Division of Nephrology, Kidney Research Institute and Harborview Medical Center, University of Washington, Seattle, Washington, USA; ⁷Kent Kidney Care Centre, East Kent Hospitals, University NHS Foundation Trust, Canterbury, Kent, UK; ⁸Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China; ⁹KDIGO, Brussels, Belgium; ¹⁰University College London, London, UK; and ¹¹Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA

ISSN 1561-6274. Нефрология. 2019. Том 23. №2

ISSN 1561-6274. Nephrology. 2019. Vol. 23. №2

© А.Ш. Румянцев, Г.А. Земченков, А.Б. Сабодаш, 2019 УДК 616.61-008.64-036.12-085.38 (035.3)

Для цитирования: Румянцев А.Ш., Земченков Г.А., Сабодаш А.Б. К вопросу о перспективах обновления клинических рекомендаций по гемодиализу. Нефрология 2019; 23 (2): 49-76. DOI:10.24884/1561-6274-2019-23-2-49-76

For citation: Rumyantsev A.Sh., Zemchenkov G.A., Sabodash A.B. To the question about the prospective for the updates of clinical guidelines for hemodialysis. Nephrology (Saint-Petersburg) 2019; 23 (2): 49-76 (In Rus.). DOI:10.24884/1561-6274-2019-23-2-49-76

А.Ш. Румянцев 1,2 , Г.А. Земченков *3 , А.Б. Сабодаш 3,4

К ВОПРОСУ О ПЕРСПЕКТИВАХ ОБНОВЛЕНИЯ КЛИНИЧЕСКИХ РЕКОМЕНДАЦИЙ ПО ГЕМОДИАЛИЗУ

¹ Кафедра факультетской терапии, Санкт-Петербургский государственный университет, ² кафедра пропедевтики внутренних болезней, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, ³ ББраун Авитум Руссланд Клиникс, Санкт-Петербург, ⁴ кафедра нефрологии и диализа, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, Россия

«Новые» физиологические индексы

- гипертрофия левого желудочка
- толщина интимы-медии каротидной артерии
- вариабельность ритма
- частота эпизодов желудочковой аритмии

Perl J et al. The Use of a Multidimensional Measure of Dialysis Adequacy – Moving beyond Small Solute Kinetics. Clin JASN. 2017;12(5):839-847.

- нарушение функции продольных волокон при сохраненной фракции выброса
- диастолическая дисфункция ЛЖ
- миокардиальный фиброз
- нарушение функции правого желудочка
- трактовка ↑ биомаркеров (в т.ч., тропонина)

растворимый рецептор ФНО -1 и -2	1/-30	ограничивает активность ФНО-α	3-10			
пентраксин-3	40	активация комплемента, активность макрофагов	2-7			
YKL-40 (CHI3L1)	40	локальный воспалительный ответ	2-5			
β-следовой протеин	26	активирует простаноиды	>35			
фактор комплемента D	24	альтернативный путь	4-17			
		адипокины				
адипонектин	30	регуляция глюкозы и окисления жирных кислот	2-3			
висфатин (NAMPT)	52	ангиогенез и пролиферация эндотелия	3-6			
лептин	16	регуляция аппетита и запасов энергии	3-4			
факторы роста						
сосудистый эндотелиальный фактор	34	пролиферация эндотелия, миграция и	2			
роста (VEGF)	апад	дифференциация) » [
FGF-2	18	ангиогенез	5-20			
FGF-23	32	обмен фосфатов	>200			
гормоны и другие						
пролактин	23	разнообразная	2-4			
конечные продукты гликирования	<1-70	неизвестна	2-20			

цитокины

белки

провоспалительная

MB,

кДа

18-28

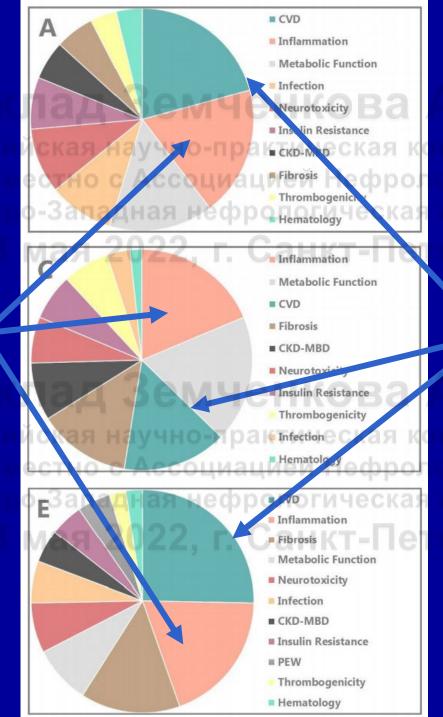
молекула

ΦΗΟ-α

интерлейкины IL-18, IL-6, IL-1β,

биологическая роль в физиологических условиях

кратность


2-5

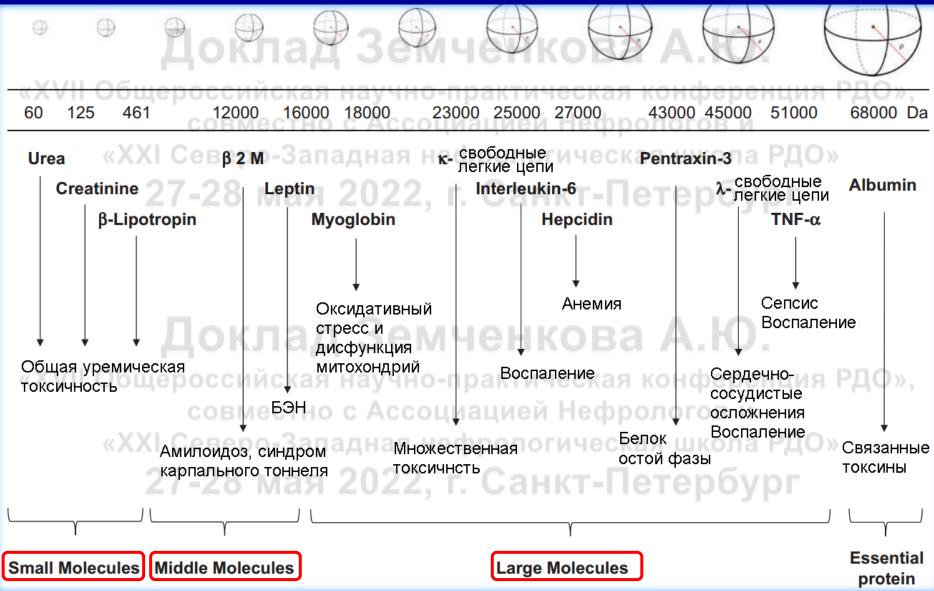
3-10

повышения при ХПН

Число токсинов, влияющих на систему

хроническое воспаление

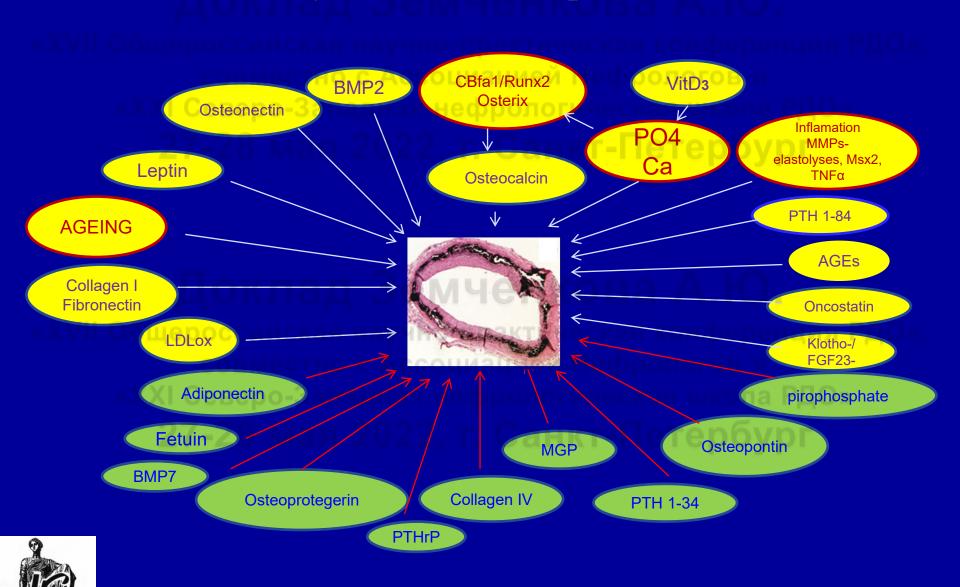
малые водорастворимые

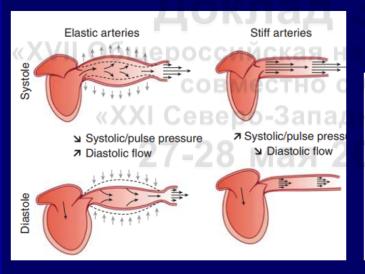

связанные с белками

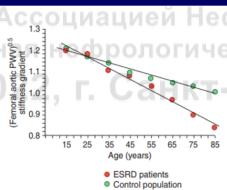
сердечнососудистые осложнения

среднемолекулярные

Уремические токсины сегодня


Патогенез диализной кардиопатии 2014

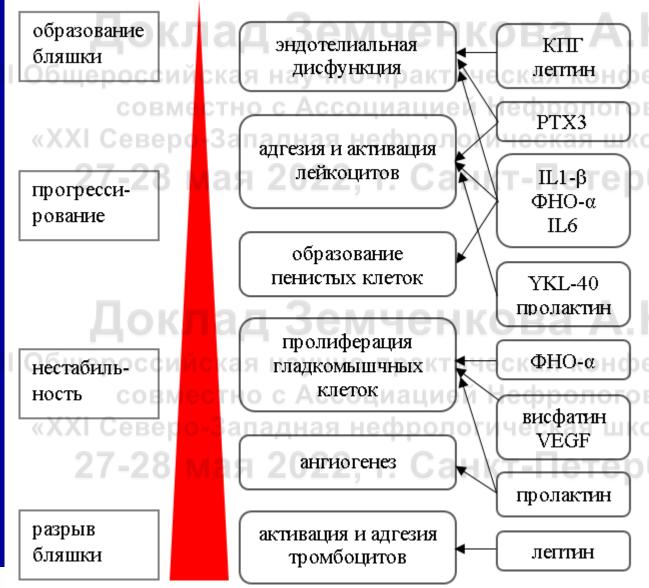

Патогенез диализной кардиопатии 2020


Индукторы (+) и ингибиторы (-) сосудистой кальцификации

утрата способности резистивных сосудов обеспечивать поддержание кровообращения в диастолу

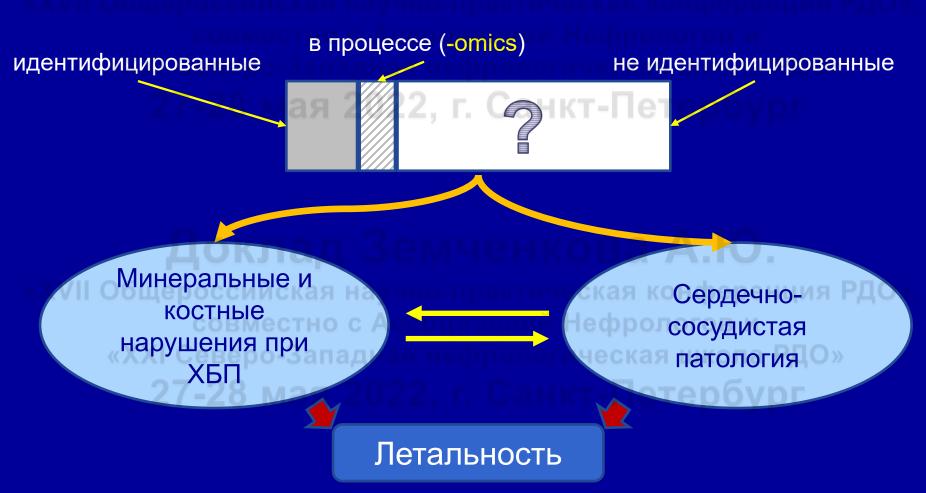
кальцификация медии

Briet M et al. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012;82(4):388-400



(кальцифицирующая артериолопатия)

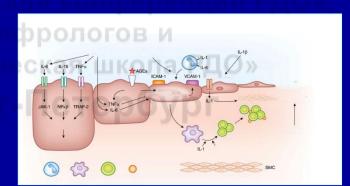
Уремические токсины в атерогенезе


Механизмы уремической токсичности: акцент на сердечно-сосудистую патологию

- подавление нормальной активности лейкоцитов и снижение противоинфекционной защиты
- активация про-оксидантной активности лейкоцитов во взаимодействии лейкоцитыэндотелий
- взаимодействие конечных продуктов гликирования (AGEs) с их рецепторами в тканях

- активация микровоспаления и прогрессирование атеросклероза
- инфильтрация макрофагов и моноцитов в зоны атеросклеротического поражения
- эндотелиальная дисфункция и жёсткость сосудов

Роль идентифицированных и ещё не идентифицированных токсинов



Уремические токсины: патологическое влияние крупных средних молекул (>15 кДа)

Wolley M et al. Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules

Clin J Am Soc Nephrol. 2018; 13(5): 805–814.

- Атеросклеротические сердечно-сосудистые заболевания:
 ИЛ-1b, ФНО, РТХ3, ИЛ-18, пролактин, АGE, висфатин, бета-следовой белок, ИЛ-6
- Структурное поражение сердца: FGF-2, FGF23

Kato S et al. **Aspects of immune dysfunction in end-stage renal disease.** Clin J Am Soc Nephrol. 2008 Sep;3(5):1526-33.

Иммунодефицит:
 Легкие цепи Ig, RBP4, FGF-23, а1-кислый гликопротеин


Stenvinkel P et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure.

Kidney Int. 1999;55(5):1899-911.

Белково-энергетическая недостаточность: ИЛ-1b, ФНО, ИЛ-6

Уремические токсины и сердечно-сосудистая патология

Уремические токсины и сердечно-сосудистая патология

- инсульт или ИМ (фатальный / нет)
- госпитализация из-за немой ишемии, нестабильной стенокардии, транзиторных ишемических атак, внутрисосудистого тромбоза, заболевания периферических артерий (PAD);
- чрескожные коронарные вмешательства или аортокоронарное шунтирование, сосудистая хирургия;
- ампутации и реваскуляризации при ИБС или PAD;
- Кроме того, PAD = история ампутации, ангиопластики или шунтирования нижних конечностей из-за дистальных ишемических поражений.

- внезапная сердечная смерть или смерть от сердечной недостаточности (без ИБС в анамнезе);
- госпитализация по поводу сердечной недостаточности (без ИБС в анамнезе),
- фиброз сердца;
- фибрилляции предсердий, другие нарушения ритма;
- ригидность артерий, гипертрофия кардиомиоцитов;
- кальцификации сосудов;
- пороки клапанов сердца.
- агрегация тромбоцитов;
- тромбообразование;
- эндотелиальная дисфункция;

атеросклеротические

Уремические токсины и сердечно-сосудистая патология

• клеточные модели уремии

33 исследования:

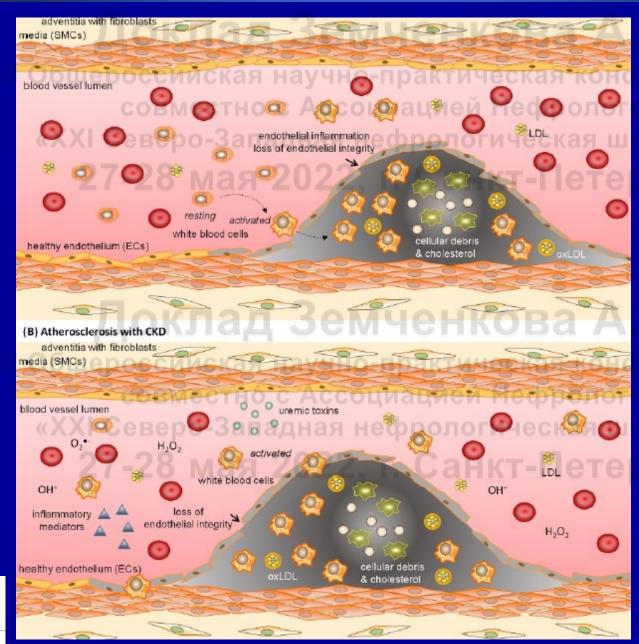
PCR, IS, HA, IAA, CMPF, фосфаты, мочевина, TMAO

• экспериментальные модели на животных

39 исследований:

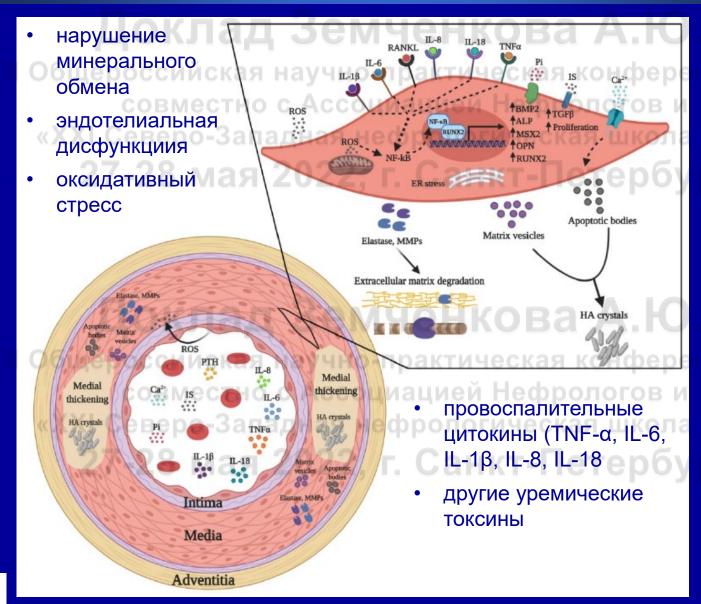
PCR, IS, HA, IAA, CMPF, фосфаты, мочевина, TMAO, Kynurenine

• наблюдательные исследования


62 исследования:

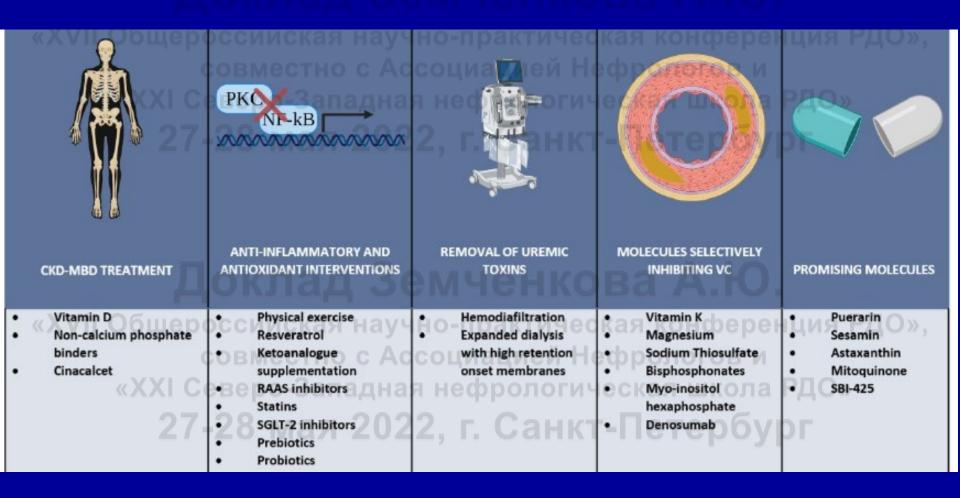
PCR, IS, HA, IAA, CMPF, фосфаты, мочевина, TMAO, Kynurenine

Уремические токсины и эндотелиальная дисфункция

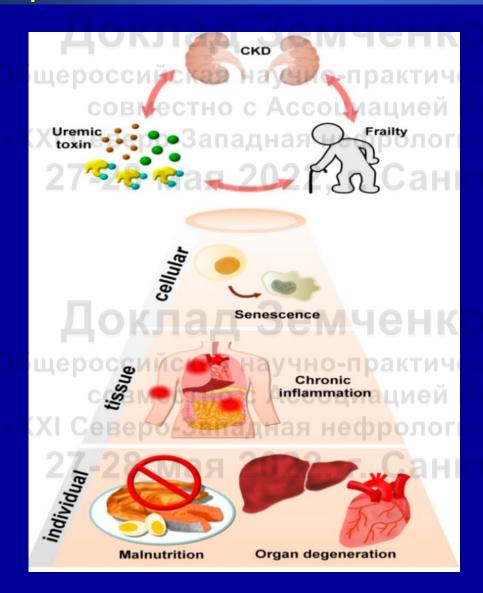


Уремические токсины и эндотелиальная дисфункция

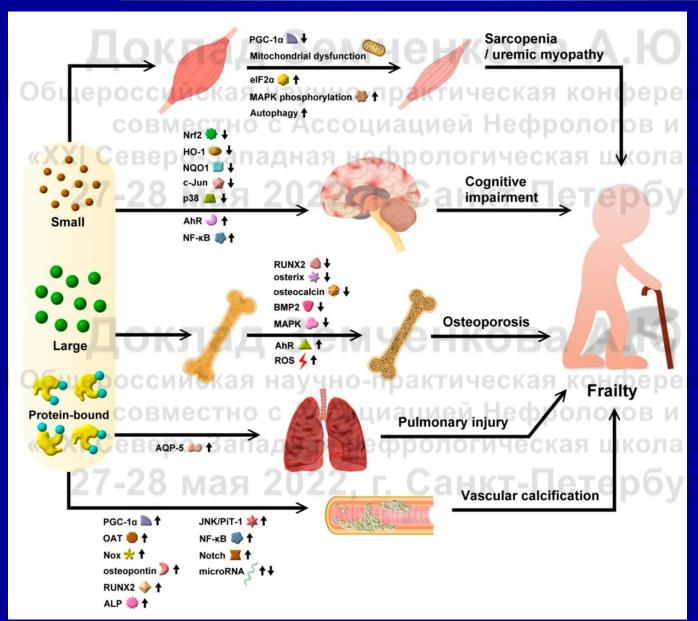
				A			. Y. III.aa	h.o				
Toxin	« X Inf	lammation	Ox	ridative Stress	ая і	Cell Death		gration/ lhesion	Prolife	eration	Thron	nbosis
Indoxyl sulfate	+2	[37-40]	+	[31,37- 39,41,42]	22	[31,40,42,43]	HK+T-	[37,39,40]	рбу	[31]		
Cyanate	+	[44,45]					+	[44]			+	[45]
cLDL	+	[46,47]			+	[47,48]	+	[46]				
AGE	+	[49]	+	[30,49,50]	+	[30]	+	[30,51]	-	[51]		
p-Cresol/ p-cresyl sulfate	+	[52]	J	[30,31,52,53]	e ^t l	[30,31,54]	KOE	[30,52]	.Ю.	[31]		
Phosphate	Эбица	anoccu	йt	[55]	u t	[55,56]	MAGCK	20 VAH	hene	באווועם	фпс	[57]
ADMA	ОЩ	сросои	100	тио о Л	+	[58]	M Hook	hnoror	peper	ПЦИИ	H	,
Uric acid	> / > / 1	COBIN	160	[59–61]	-	[60,61]	ви нес	phonor	ов и			



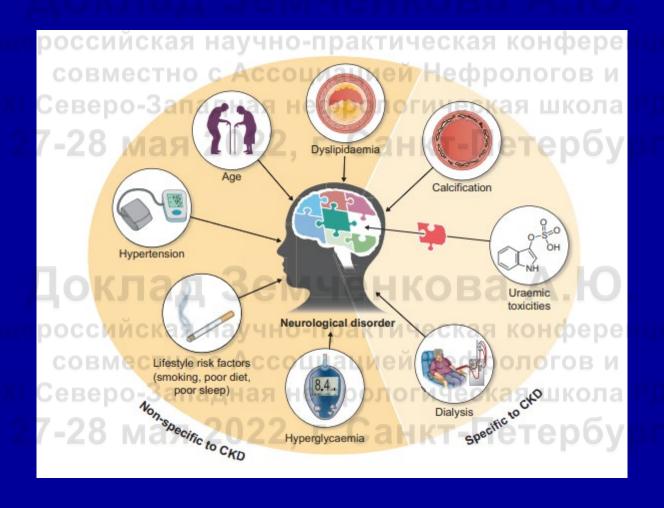
Уремические токсины и сосудистая кальцификация



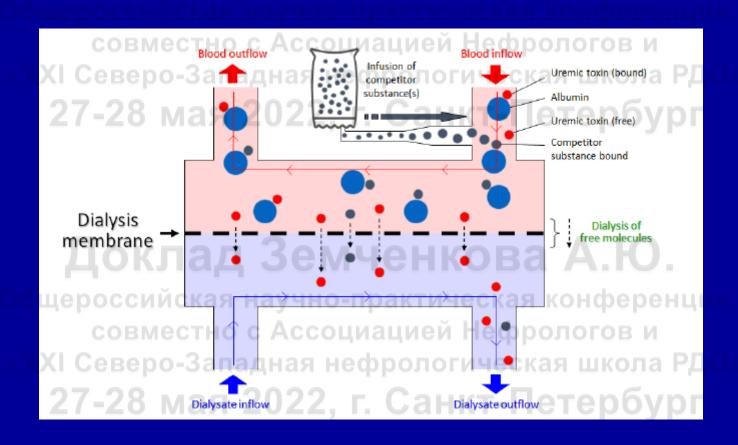
Сосудистая кальцификация: меры противодействия



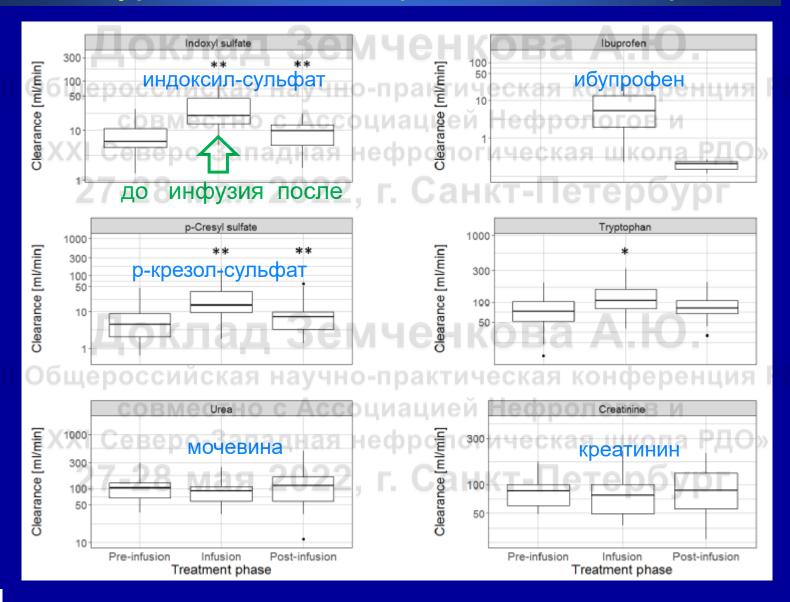
Уремические токсины – ХБП - Астения



Уремические токсины и Frailty



Неврологические нарушения и уремические токсины



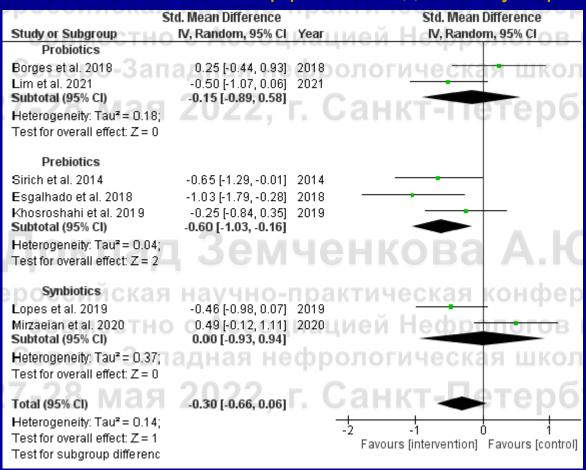
Конкурентные биндеры в диализаторе

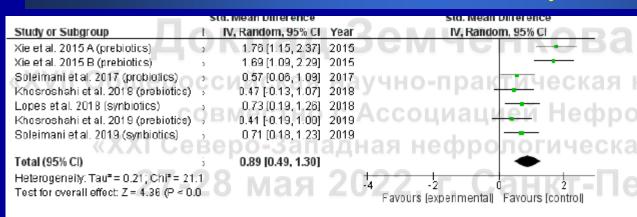
Конкурентные биндеры в диализаторе

Effects of Probiotics, Prebiotics, and Synbiotics on Uremic Toxins, Inflammation, and Oxidative Stress in Hemodialysis Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

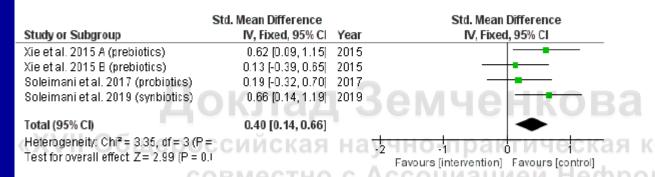
«XXI Cebepo-3an	a _{D2}	D3 D4	H _{D5}	Overall	логическ
Natarajan et al. 2014	•		1		Low risk
Sirich et al. 2014 - 4	1	0 6		(1)	Some concerns
Viramontes-Hörner et al. 2015	•		1	1	High risk
Xie et al. 2015	•	• (1	1 02	Randomisation process Deviations from the intended interventions
Shariaty et al. 2015	•		•	D3	Missing outcome data
Soleimani et al. 2017	•	• •	•	D4	
Borges et al. 2018	ā	ě		DS	Selection of the reported result
Eidi et al. 2018	ă	ă	ă	ă	
Esgalhado et al. 2018 & Azevedo et al. 2020	ă	ă a	À		LVADS
Khosroshahi et al. 2018	ĕ	ě	•	1	HKUBC
Lopes et al. 2018 & 2019 Haghighat et al. 2019 & 2020	1		8	¦ ак	тическая
Khosroshahi et al. 2019	•	A C	()	и Ци	іей Нефр
Kooshki et al. 2019	•	• •	!	1	1011 110 dp p
(Laffin et al. 2019 C C B C D O - 3 a.)				O O	логическ
Soleimani et al. 2019	•	. 6		•	
Liu et al. 2020 = Z	•			•	анкт-п
Mirzaelan et al. 2020 +	•	• •	•	•	
Paiva et al. 2020	•	• •	1	1	
Lim et al. 2021	•	• •	1	!	

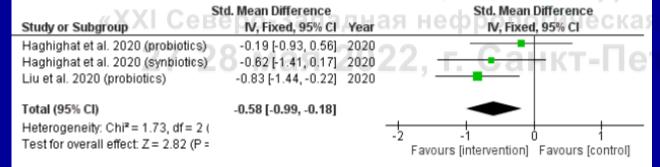
Probiotics, Prebiotics, and Synbiotics


эффект на р-крезол-сульфат


Probiotics, Prebiotics, and Synbiotics

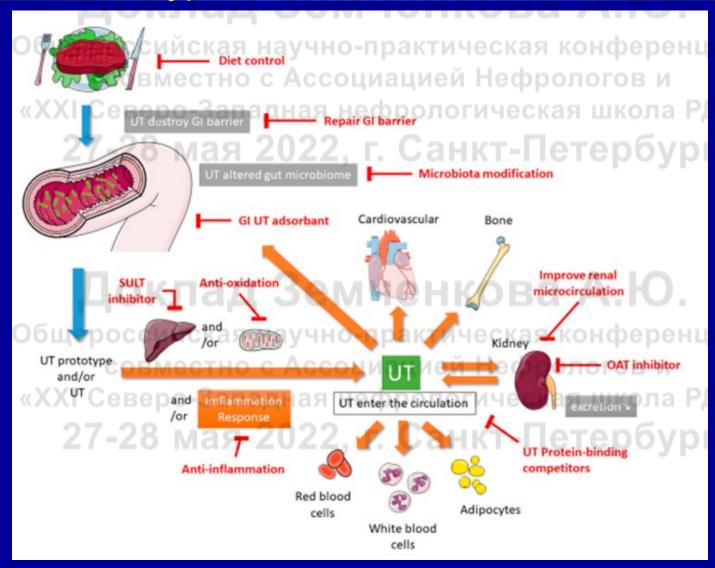
эффект на индоксил-сульфат




Probiotics, Prebiotics, and Synbiotics

эффект на общую антиоксидантную активность

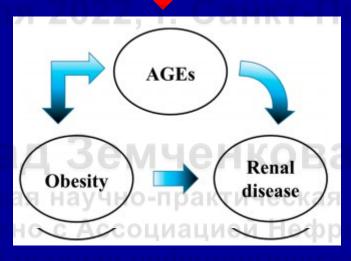
эффект на систему глютатиона



эффект на уровень эндотоксинов

Nguyen TTU et al. Effects of Probiotics, Prebiotics, and Synbiotics on Uremic Toxins, Inflammation, and Oxidative Stress in Hemodialysis Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med. 2021;10(19):4456. doi: 10.3390/jcm10194456.

Терапевтические стратегии против уремических токсинов



Диета: ограничение потребления конечных продуктов гликировниия

Интенсивная тепловая обработка продуктов богатых белками и сахарами

конечные продукты гликировниия

Воздействие на задержку уремических токсинов – компонент нефропротективной терапии

- Конечные продукты гликирования КПГ (Advanced Glycation End Product)
- Антагонисты цитокинов (Но: риск инфекций)
- Блокада рецепторов эндотелина
- Понижение уровня гомоцистеина (известного фактора СС-патологии); возможна коррекция фолиевой кислотой (±B₆/B₁₂); хотя результаты множества исследований противоречивы, есть свидетельства снижения СС-рисков и, возможно, замедления прогрессирования (вместе с иАПФ)
- Понижение уровня мочевой кислоты (аллопуринол, фебуксостат, probenecid)
 - в некоторых исследованиях улучшение некоторых суррогатных СС-исходов
 - есть свидетельства замедления прогрессирования ХБП (все исследования небольшие)
- AST-120 (Kremezin) сорбент водонерастворимых уремических токсинов из кишечника (индоксил-сульфат и др. связь с СС-патологией); результаты исследований противоречивы, эффект только в некоторых подгруппах

What did he say?

- Интенсификация сеанса диализа, возможно, достигла предела в части улучшения важных исходов
 - актуален поиск путей
 - эффективного выведения
 - ограничения поступления
 - блокирования образования

уремических токсинов большей массы

 по-прежнему актуальна коррекция уровней уремических токсинов малой и средней массы, что также требует поиска более эффективных путей достижения этой цели

