

Спасибо за приглашение

THROMBOTIC MICROANGIOPATHY: PATHOLOGY AND DIAGNOSIS

Charles E. Alpers
University of Washington

What is it?

What is it?

Corollary: Can we reliably agree on how to diagnose it?

What is it?

Corollary: Can we reliably agree on how to diagnose it?

Pathogenesis

What is it?

Corollary: Can we reliably agree on how to diagnose it?

Pathogenesis

Pathology

What is it?

Thrombotic Microangiopathy; Definition

Wikipedia: **Thrombotic microangiopathy**, abbreviated **TMA**, is a pathology that results in thrombosis in capillaries and arterioles, due to an endothelial injury. It may be seen in association with thrombocytopenia, anemia, purpura and renal failure.

Thrombotic Microangiopathy; Definition

Wikipedia: **Thrombotic microangiopathy**, abbreviated **TMA**, is a pathology that results in **thrombosis** in capillaries and arterioles, due to an endothelial injury. It may be seen in association with thrombocytopenia, anemia, purpura and renal failure.

Thrombotic Microangiopathy; Definition

Thrombotic microangiopathy (TMA) is the pathologic term for a condition characterized by microvascular changes including thrombosis in association with laboratory abnormalities of microangiopathic hemolytic anemia and thrombocytopenia.

Laszik, Kambham, and Silva in Heptinstall's Pathology of the Kidney, 7th ed. 2015

Thrombotic Microangiopathy Constellation of Features

- 1) Microvascular thromboses (varies)
- 2) Hemolytic anemia (sometimes)
- 3) Thrombocytopenia (not always)
- 4) Vasculopathy of small arteries, arterioles, and capillaries (if looked for)
- 5) Variable organ involvement

Kidney: Involves glomerular capillaries, arteries and arterioles, or both.

Thrombotic Microangiopathy – The Renal Pathology Perspective

TMA is a pattern of injury

- Glomerular
 - Endothelial injury (Endotheliosis)
 - Capillary wall injury (widening of the subendothelial space, duplication of basement membranes)
 - Mesangiolysis
 - Capillary microthromboses

HUS Lesions: Chronic

- Cellular interposition/ double contour GBM
- Glomerular ischemic lesions:
 collapse
 corrugated GBM
 fibrosis of Bowman's capsule
- Glomerular obsolescence
- Intimal fibrosis
- Tubulointerstitial fibrosis

Thrombotic Microangiopathy – The Renal Pathology Perspective

TMA is a pattern of injury

- Glomerular
 - Endothelial injury (Endotheliosis)
 - Capillary wall injury (widening of the subendothelial space, duplication of basement membranes)
 - Mesangiolysis
 - Capillary Microthromboses
- Arterial/Arteriolar: (Acute)
 - Intimal swelling
 - Thromboses
 - Hyperplastic changes ("onionskinning")

Thrombotic Microangiopathy – The Renal Pathology Perspective

TMA is a pattern of injury

- Glomerular
 - Endothelial injury (Endotheliosis)
 - Capillary wall injury (widening of the subendothelial space, duplication of basement membranes)
 - Mesangiolysis
 - Capillary Microthromboses
- Arterial/Arteriolar:
 - Intimal swelling
 - Hyperplastic changes ("onionskinning")
- Coagulation
 - Fibrin / platelet thrombi
 - Hemolysis / schistocytes

Cases of TMA may have all or only some (most common) of these features. Renal limited (and particularly glomerular limited) cases are common.

Thrombotic Microangiopathy Electron Microscopy

- Marked expansion of lamina rara interna
- Endothelial cell swelling
- Fibrin and platelet deposition
- Mesangiolysis

Diagnosis of TMA

What are the minimal criteria to establish a pathologic diagnosis?

Diagnosis of TMA

What are the minimal criteria to establish a pathologic diagnosis?

Thrombosis?

Diagnosis of TMA

What are the minimal criteria to establish a pathologic diagnosis?

Thrombosis?

If not thrombosis, what then?

Is glomerular involvement sufficient?

A clinicopathologic study of thrombotic microangiopathy in IgA nephropathy

El Karoui K, Hill GS, Karras A, Jacquot C, Moulonguet L, Kourilsky O, Frémeaux-Bacchi V, Delahousse M, Duong Van Huyen JP, Loupy A, Bruneval P, Nochy D.

J Am Soc Nephrol. 2012;23:137-48.

TMA or Not?

El Karoui K, Hill GS, Karras A, et al. A clinicopathologic study of thrombotic microangiopathy in IgA nephropathy. J Am Soc Nephrol. 2012 Jan;23(1):137-48.

TMA or Not?

El Karoui K, Hill GS, Karras A, et al. A clinicopathologic study of thrombotic microangiopathy in IgA nephropathy. J Am Soc Nephrol. 2012 Jan;23(1):137-48.

TMA or Not?

El Karoui K, Hill GS, Karras A, et al. A clinicopathologic study of thrombotic microangiopathy in IgA nephropathy. J Am Soc Nephrol. 2012 Jan;23(1):137-48.

Thrombotic Microangiopathy Pathogenesis

A Rat Model of Endothelial Injury and TMA

- Induced by goat anti-rat endothelial cell antibody
- Clinical: Renal insufficiency, proteinuria, hemolysis, diminished platelet counts
- Early lesion: Intracapillary platelet/ fibrin thrombi
- Mesangiolysis
- Recovery

Anti-GEN antibody: Ten Minutes

Anti-GEN antibody: 24 Hours

Anti-GEN antibody: 72 Hours

Anti-GEN antibody: 5 Days

Thrombotic Microangiopathy

Rat Human

Anti-GEN antibody: Ten Days

Thrombotic Microangiopathy Pathogenesis

Endothelial cell injury

Thrombotic Microangiopathy

- Hemolytic Uremic syndrome
- Thrombotic thrombocytopenic purpura
- Malignant hypertension
- Eclampsia/Pre-eclampsia
- Post-partum renal failure
- Oral contraceptives
- Infections
- Allograft transplant rejection
- Scleroderma
- Systemic lupus erythematosus
- Anti-phospholipid antibody syndrome
- Heredity
- Radiation
- Disseminated intravascular coagulation
- Drugs/toxins

Syndromes of Thrombotic Microangiopathy

James N. George and Carla M. Nester

N Engl J Med 371:654-666; 2014

Drug Induced Thrombotic Microangiopathy

- Chemotherapy
 - Mitomycin
 - Gemcitabine
 - Radiopharmaceuticals
- Immunomodulatory
 - Cyclosporine
 - Tacrolimus
 - Rapamycin
 - OKT3
 - Interferon

- Anti-Angiogenic
 - VEGF Inhibitor
- Antiplatelet Agents
 - Clopridogel
 - Ticlopidine
- Other
 - Quinine

Drug-Induced Thrombotic Microangiopathy Mechanisms of Injury

<u>Mechanism</u>	<u>Key Factors</u>	<u>Drugs Implicated</u>
Toxicity to Endothelial Cells	Cumulative Dose	Cancer Chemotherapy (Mitomycin, Gemcitabine, Radiopharmaceuticals), Calcineurin Inhibitors, Anti- platelet agents
Acute, Immune Mediated	Not dose dependent – antibodies directed to platelets (quinine) and ADAMTS13 (anti-platelet agents)	Quinine, Anti-platelet agents
Acquired ADAMTS 13 Deficiency		Rarely reported; Antiplatelet agents
Interference with podocyte/endothelial cell axis of VEGF signaling		Anti-VEGF antibodies

Calcineurin Inhibitors and TMA

Cyclosporine and Tacrolimus have similar mechanisms of toxicity

Non-TMA related toxicities:

- Vasoconstriction
- Tubular cell toxicity
- Interstitial fibrosis

Possibly related toxicity

- Arteriolopathy

Probable etiologic injury in TMA

- Endothelial toxicity
- No evidence of altered ADAMTS 13 activity

Calcineurin Inhibitor Induced Vasoconstriction

Calcineurin Inhibitor Toxicity: Arteriolopathy

Calcineurin Inhibitor Induced TMA Presentation

Usually manifests as acute renal failure

- Renal failure may be only manifestation
- Usually diagnosed by renal biopsy
- Increased susceptibility with sirolimus
- Inconstant association with supratherapeutic drug levels

Calcineurin Inhibitor Induced TMA Outcome

- Reversible
- Outcome better than most other forms of HUS/TTP/TMA
- Calcineurin Inhibitor induced TMA is usually drug specific (i.e., cyclosporine induced TMA is not necessarily predictive of tacrolimus induced TMA, and vice versa)
- Benefit of plasma exchange remains unproven

Gemcitabine-induced TMA

Initially approved as a therapeutic for metastatic pancreatic cancer, now used for numerous other malignancies

Incidence:

- TMA association first reported in 1994.
- Incidence is low- 8/2586 patients (0.31%) in one study (Cancer 2004; 2664)

Presentation:

Onset is variable. TMA may develop months or even years after last dose

Mechanism:

 Presumed endothelial toxicity. Dose-dependent associations not well established.

VEGF (Vascular Endothelial Growth Factor) and TMA

Eremina, et al J. Clin. Invest. 2003; 111:707

Anti-VEGF Antibody and TMA A Renal Biopsy Study

Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center.

- 100 biopsied cases 2006-2013
- 73% showed TMA
 - 50% were renal-limited (i.e., no hemolytic anemia)
- Hypertension and proteinuria resolved after drug discontinued (recurred in 3/3 who were rechallenged)

Drug Induced Thrombotic Microangiopathy (TMA) Summary

- Drug Induced TMA may be limited to the kidney
- Mechanisms of drug induced injury are diverse
 - Endothelial toxicity
 - Immune mechanisms (autoantibody formation)
 - Podocyte/endothelium homeostatic axis perturbations
- Mechanisms are generally distinct from those identified in cases of TTP/HUS
 - ADAMTS 13 rarely implicated
- Established therapeutic options are limited

Atypical HUS and Complement

- Loss of function in regulatory genes:
- Factor H: secreted, produced in liver
- Membrane cofactor protein (MCP): transmembrane, expressed systemically
- Factor I
- Gain of function in activating genes:
- C3, Factor B
- Autosomal recessive or dominant, variable penetrance

Noris 2003, Richards 2003, Pickering/Cook 2011

COMPLEMENT DYSREGULATION IN aHUS

Mastellos DC, et al. Trends in Immunology 38: 383-394, 2017

% of genetic mutations in aHUS

	Children		Adults	
	France	Italy	France	Italy
N=	230	152	289	121
CFH, CFH hybrid	17.4	35.6	30	21.4
MCP	19.4	9.2	9	3.3
CFI	3.4	2.6	9	4.9
C3	9.5	3.9	8	4.9
CFB	.5	nd	1	nd
Anti-CFH ab	9.1	3.9	3.8	1.6
THMD	0	7.8	0	.8
Combined	1.7	nd	2	nd
DGKE	4.7	nd	0	nd

KDIGO 2016 Controversies Conference

ATYPICAL HEMOLYTIC UREMIC SYNDROME AND C3 GLOMERULOPATHY

This presentation is based on: Goodship T. et al., Kidney Intl (2017) 91:539-551.

aHUS: LABORATORY ANALYSIS

- Investigations should focus on determining the underlying etiology and excluding other diagnoses.
- Measure ADAMTS13 activity to diagnose or exclude thrombotic thrombocytopenic purpura (TTP).
- Investigation for STEC-HUS should be routine in all patients with presumed aHUS.

aHUS: LABORATORY ANALYSIS

- Serum/plasma levels of complement proteins should be measured in all patients with primary aHUS prior to plasma therapy.
 - C3 levels will be low in 30-50% of aHUS cases.
 - Low C3 levels are also noted in acute STEC-aHUS and pneumococcal aHUS.

aHUS: GENETIC TESTING

- The minimum set of genes that should be screened includes CFH, CD46, CFI, C3, CFB, THBD, CFHR1, CFHR5, and DGKE.
- Genetic testing should also include the risk haplotypes CFH- CFHR3 and MCP_{ggaac} as they modify disease penetrance and severity.
 - Delays in obtaining results from genetic or molecular diagnostic studies should not prevent a clinical diagnosis or postpone treatment, as early anticomplement treatment is crucial to preserve renal function and avoid irreversible sequelae.

aHUS: Acquired Drivers of Disease

- Acquired drivers of disease are autoantibodies to complement proteins or protein complexes that impair normal function.
- The best-studied acquired drivers are FH autoantibodies, which are usually seen in association with deletion of the CFHR3 and CFHR1 genes.

Eculizumab: Mechanism of Action

Liszewski MK, et al. 2017.

Annu. Rev. Pathol. Mech. Dis. 12:25-52

Eculizumab in complement-mediated HUS

- Rates of ESRD/death have dropped significantly
 - ⁻ 6-15% vs 48-64% in pre-eculizumab era
 - Earlier treatment leads to better outcomes
- Eculizumab is now recommended as first line therapy for aHUS
 - Plasma Exchange if eculizumab is not available
- Optimal dosing and duration of therapy remain unclear

TMA: Summary

- Pathologic features are not etiologically specific (and thrombi may not be present in the chronic stage)
- Pathogenesis involves endothelial injury, often with multiple "hits"
 - (e.g. genetic mutations and polymorphisms, autoantibodies; environmental factors)
- Microbiology of infection-related HUS is constantly changing
 - Non-O157:H7 strains are becoming more common
- Complement inhibition has revolutionized the management of aHUS
 - Non-complement causes of HUS remain to be identified
 - Role of complement dysregulation in other forms of TMA is uncertain

