ПРОГРЕСС НЕОБХОДИМ: РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ ТЕРАПИИ ГЕМОДИАЛИЗОМ

Земченков А.Ю.

Северо-Западный медицинский университет им. И.И.Мечникова

Первый Санкт-Петербургский медицинский университет им.акад.И.И.Павлова

СПб Городской нефрологический центр

I Клинико-индустриальный симпозиум Санкт-Петербург, 13 февраля 2020

Адекватность гемодиализа – постановка задачи

В идеалистическом подходе адекватно леченым диализным пациентом можно было бы назвать

- физически активного,
- с хорошим питанием,
- стабильно пребывающего в эуволемии человека, у которого поддерживается
- хорошее качество жизни,
- а срок ожидаемой жизни не отличается от здоровых лиц

Согласительная конференция по критериям начала диализа, доступу, выбору модальности и режиму диализа

KDIGO Controversies Conference on Dialysis Initiation, Modality Choice and Prescription

January 25-28, 2018 Madrid, Spain

КDIGO – международная организация, чья миссия – улучшать помощь и исходы у пациентов с болезнями почек по всему миру, поощряя координацию, сотрудничество и интеграцию инициатив по разработке и внедрению в практику клинических рекомендаций. KDIGO регулярно проводит согласительные конференции по вопросам важным для пациентов с болезнями почек. Эти конференции призваны дать обзор современного состояния вопроса и согласовать среди экспертовучастников, что следует сделать в данной области, чтобы улучшить помощь и исходы у пациентов. Выводы конференции закладываются в основу клинических рекомендаций или выделяют области, в которых требуются дополнительные исследования для получения твердых свидетельств, которые могут лечь в основу будущих рекомендаций.

Вызовы системе здравоохранения

Темы согласительной конференции KDIGO-18

Global Action. Local Change.

- Group 1: Выбор начальной модальности диализа
- Group 2: Выбор времени старта и подготовка к старту
- Group 3: Подготовка диализного доступа
- Group 4: Оптимальная адекватность диализа и контроль симптомов

ПРОГРАММА НЕПРЕРЫВНОГО ПОСЛЕДИПЛОМНОГО ОБРАЗОВАНИЯ ПО НЕФРОЛОГИИ

ISSN 1561-6274. Нефрология. 2017. Том 21. №3.

© А.Г.Строков, К.Я.Гуревич, А.П.Илын, А.Ю.Денисов, А.Ю.Земченков, А.М.Андрусев, Е.В.Шутов, О.Н.Котенко, В.Б.Злоказов, 2017 УДК 616.61-036.12-085.38-008. doi: 10.24884/1561-6274-2017-3-92-111

Разработчики:

Ассоциация Нефрологов Российское Диализное Общество Столичная Ассоциация Врачей Нефрологов

ЛЕЧЕНИЕ ПАЦИЕНТОВ С ХРОНИЧЕСКОЙ БОЛЕЗНЬЮ ПОЧЕК 5 СТАДИИ (ХБП 5) МЕТОДАМИ ГЕМОДИАЛИЗА И ГЕМОДИАФИЛЬТРАЦИИ

КЛИНИЧЕСКИЕ РЕКОМЕНДАЦИИ

Утверждено: 10 марта 2016 г.

Рабочая группа:

А.Г. Строков, К.Я. Гуревич, А.П. Ильин, А.Ю. Денисов, А.Ю. Земченков, А.М. Андрусев, Е.В. Шутов, О.Н. Котенко, В.Б. Злоказов

Developers:

Association Of Nephrologists of Russia Russian Dialysis Society The Metropolitan Nephrology Physicians Association

TREATMENT OF PATIENTS WITH CHRONIC KIDNEY DISEASE STAGE 5 (CKD 5) BY HEMODIALYSIS AND HEMODIAFILTRATION.

CLINICAL GUIDELINES

Working group:

G.A. Strokov, K.Ya. Gurevich, A.P. Ilyin, A.Yu. Denisov, A.Yu. Zemchenkov, A.M. Andrusov, E.V. Shutov, O.N. Kotenko, V.B. Zlokazov

Методика оценки силы рекомендаций и уровня их предсказательности, использованная при составлении данных клинических рекомендаций*.

По силе предсказательности рекомендации подразделяются на три категории в убывающем порядке (табл. 1):

- уровень 1 (эксперты рекомендуют)
- уровень 2 (эксперты предлагают)
- нет градации

Земченков А.Ю. Россия, 191104, Санкт-Петербург, Литейный пр., д. 56. Городская Мариинская больница, отделение диализа. Тел.: +7(921)918-01-90, E-mail: kletk@inbox.ru

Сила предсказательности рекомендаций подразделена на 4 уровня (табл. 2).

Основные понятия и определения

Для целей реализации настоящих клинических рекомендаций устанавливаются следующие основные понятия и термины:

 Заместительная терапия функции почек (ЗПТ) – замещение утраченной функ-ций почек специализированными методами лечения или трансплантацией почки. Термин, использующий-

Примечание. * - составлены в соответствии с клиническими рекомендациями KDIGO.

Российские рекомендации 2016

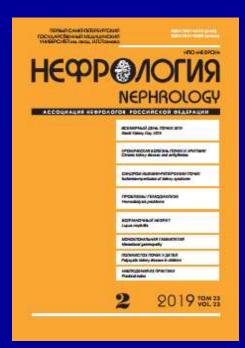
Строков АГ и соавт. Лечение пациентов с хронической болезнью почек 5 стадии (ХБП 5) методами гемодиализа и гемодиафильтрации. Клинические рекомендации. Нефрология. 2017; 21(3):92-111.

ISSN 1561-6274. Нефрология. 2019. Том 23. №2

ISSN 1561-6274. Nephrology. 2019. Vol. 23. №2

© А.Ш. Румянцев, Г.А. Земченков, А.Б. Сабодаш, 2019

УДК 616.61-008.64-036.12-085.38 (035.3)


Для цитирования: Румянцев А.Ш., Земченков Г.А., Сабодаш А.Б. К вопросу о перспективах обновления клинических рекомендаций по гемодиализу. Нефрология 2019; 23 (2): 49-76. DOI:10.24884/1561-6274-2019-23-2-49-76

For citation: Rumyantsev A.Sh., Zemchenkov G.A., Sabodash A.B. To the question about the prospective for the updates of clinical guidelines for hemodialysis. Nephrology (Saint-Petersburg) 2019; 23 (2): 49-76 (In Rus.). DOI:10.24884/1561-6274-2019-23-2-49-76

А.Ш. Румянцев 1,2 , Г.А. Земченков *3 , А.Б. Сабодаш 3,4

К ВОПРОСУ О ПЕРСПЕКТИВАХ ОБНОВЛЕНИЯ КЛИНИЧЕСКИХ РЕКОМЕНДАЦИЙ ПО ГЕМОДИАЛИЗУ

¹ Кафедра факультетской терапии, Санкт-Петербургский государственный университет, ² кафедра пропедевтики внутренних болезней, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, ² ББраун Авитум Руссланд Клиникс, Санкт-Петербург, ⁴ кафедра нефрологии и диализа, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, Россия

www.kidney-international.org

KDIGO executive conclusions


Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

OPEN

Christopher T. Chan¹, Peter J. Blankestijn², Laura M. Dember³, Maurizio Gallieni⁴, David C.H. Harris⁵, Charmaine E. Lok¹, Rajnish Mehrotra⁶, Paul E. Stevens⁷, Angela Yee-Moon Wang⁸, Michael Cheung⁹, David C. Wheeler¹⁰, Wolfgang C. Winkelmayer¹¹ and Carol A. Pollock⁵; for Conference Participants¹²

¹University Health Network, University of Toronto, Ontario, Canada; ²Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; ³Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ⁴Department of Clinical and Biomedical Sciences "Luigi Sacco", University of Milan, Milan, Italy; ⁵University of Sydney, Sydney, NSW, Australia; ⁶Division of Nephrology, Kidney Research Institute and Harborview Medical Center, University of Washington, Seattle, Washington, USA; ⁷Kent Kidney Care Centre, East Kent Hospitals, University NHS Foundation Trust, Canterbury, Kent, UK; ⁸Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China; ⁹KDIGO, Brussels, Belgium; ¹⁰University College London, London, UK; and ¹¹Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA

Темы согласительной конференции KDIGO-18...

... для западного и восточного полушарий

Global Action, Local Change,

Выбор начальной модальности

?

+

Выбор времени старта

?

+

Подготовка диализного доступа

?

+

Адекватность диализа и контроль симптомов 7

+/-

Темы согласительной конференции KDIGO-18...

... для западного и восточного полушарий

Выбор начальной модальности

?

+

Выбор времени старта

?

+

Подготовка диализного доступа

?

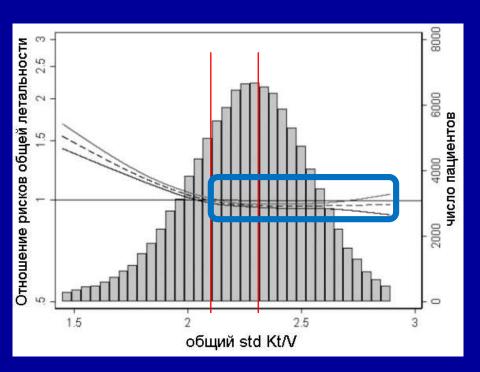
+

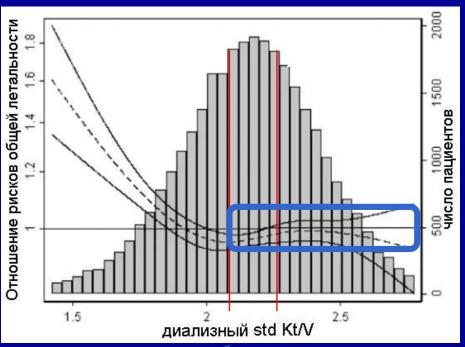
Адекватность диализа и контроль симптомов ?

+/-

Целевые значения Kt/V

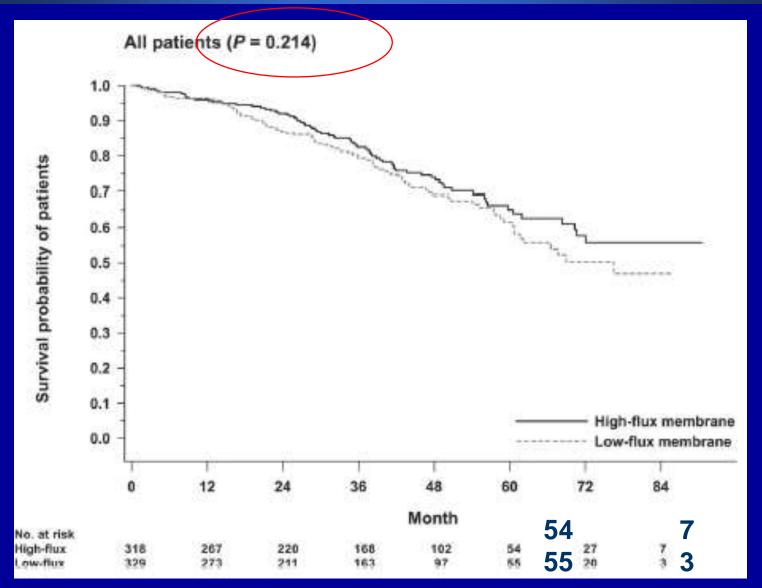
Российские национальные	eKt/V – 1,2;	продолжительность сеанса при трехразовом		
рекомендации (2016)	= spKt/V - 1,4.	режиме - не менее 4 часов, вне зависимости от		
	stdKt/V ≥ 2,2 (1A)	Kt/V (1A)		
KDOQI Clinical Practice	целевой spKt/V –	можно учитывать остаточную функцию почек.		
Guideline for Hemodialysis	1,4, минимально	Более частый диализ целевой stdKt/V – 2,3 в		
Adequacy:	обеспеченный – 1,2	неделю; минимально обеспеченная доза 2,1 (Not		
2015 Update	(2B).	graded)		
Hemodialysis Clinical Practice	spKt/V>1,2	раздел по частому и длительному диализу		
Guidelines for the Canadian	(Grade C)	обновлен отдельным набором рекомендаций		
Society of Nephrology 2006		(2013) по «intensive hemodialysis» (Conditional		
		recommendation; very low-quality evidence)		
Renal Association Clinical	eKt/V >1,2	чтобы обеспечить всем, цель - eKt/V >1,3 или		
Practice Guideline on HD	(или spKt/V>1.3)	ДСМ>70%; от большей дозы выиграют женщины		
(Великобритания, 2009)	(Evidence)	и пациенты с малым размером тела		
European Best Practice	eKt/V≥1,20	в части II (2007) – расширение показаний к		
Guidelines for HD	(sp Kt/V ≈1,4)	большей частоте и продолжительности сеансов,		
(Part 1), 2002	(Evidence level: B)	без изменений в отношении Kt/V (Opinion – III)		
EUDIAL group	объем замещения на	а сеансе гемодиафильтрации = 21 литр;		
(ERA-EDTA)	(конвекционный объем – 24 л, контроль фильтрационной фракции ≤			
2014-2015	25% от кровотока);			


Обеспеченная адекватность диализа

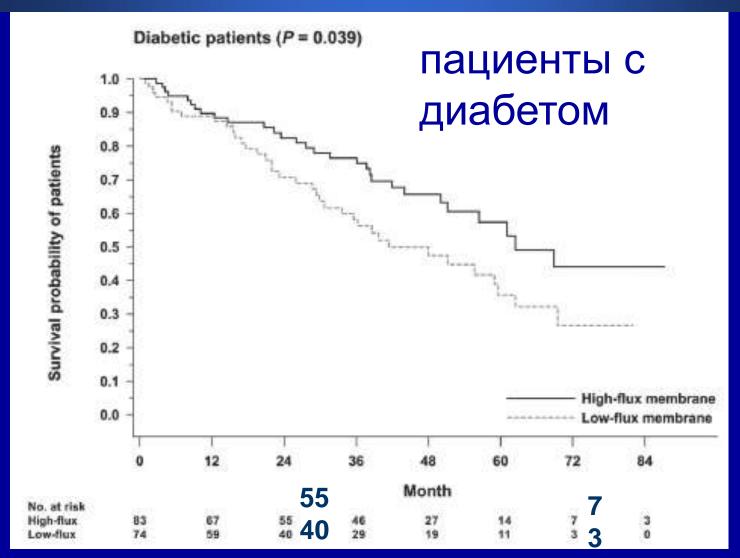

	spKt/V	скорость УФ, мл/час/кг	длительность сеанса, мин
Российский	<1,2 – 10% ;		
регистр, 2013	1,2-1,6 – 59%;		
	>1,6 – 31%		
СПб регистр ЗПТ,	<1,2 – <mark>3%</mark> ;		<210 – <mark>0%</mark>
2016	1,2-1,6 – 61%;		210-240 – 73%
	>1,6 – 36%		>240 – <mark>26</mark> %
DOPPS, США,	<1,2 – <mark>4%</mark> ;	<10 – 74%;	<210 – <mark>29%</mark>
декабрь 2017	1,2-1,6 – 50%;	10-13 – 17%;	210-240 – 41%
	>1,6 – 45%	>13 – <mark>9%</mark>	>240 – 30 %
	5-95% 1,21-2,04		<i>5-95</i> % 180÷257
DOPPS, Канада,	<1,2 – 13% ;	УФ – медиана – 2,5%	<210 – <mark>16%</mark>
апрель 2016	1,2-1,6 – 47%;	Q1-Q3 – 1,3÷3,2%	210-240 – 59%
	>1,6 – 40%	<i>5-95</i> % 0,3÷5,7%	>240 – <mark>25</mark> %
	5-95% 1,07-2,02		<i>5-95</i> % 180÷269
DOPPS,	<1,2 – 11% ;	УФ – медиана – 2,24%	<210 – <mark>2%</mark>
Германия,	1,2-1,6 – 47%;	Q1-Q3 – 1,53-3,6%	210-240 – 25%
декабрь 2014	>1,6 – 42%	<i>5-95%</i> -0,07÷4,51	>240 – 73 %
	5-95% 1,09-2,09		<i>5-95</i> % 239÷314

Связь std Kt/V с летальностью

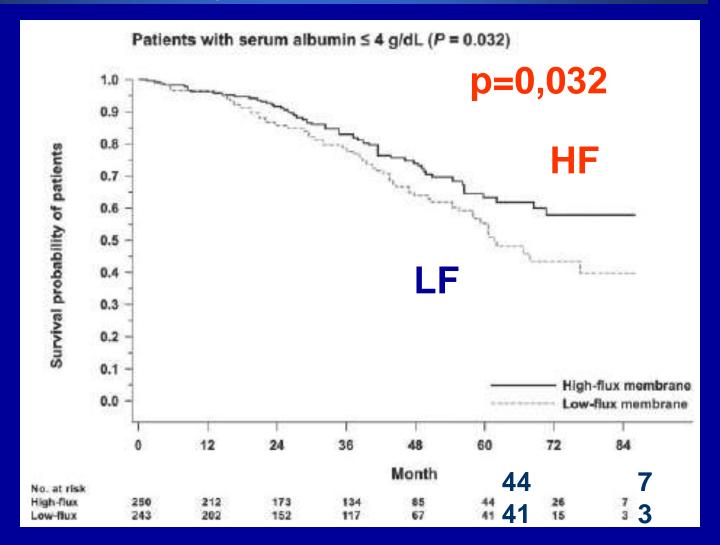
Da Vita – 109 тысяч пациентов



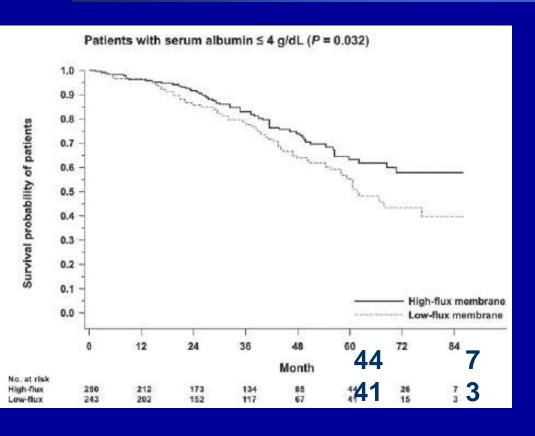
эффект – только до уровня 2,1

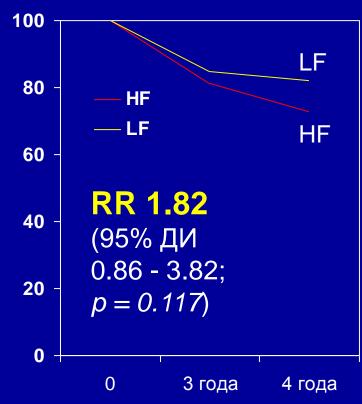


МРО: первичные результаты

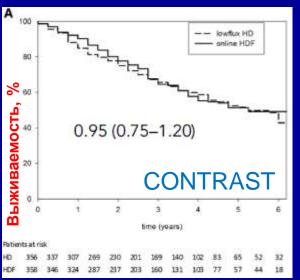


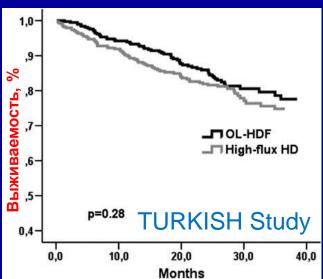
MPO: post hoc анализ




MPO: выживаемость при исходном альбумине <40 г/л

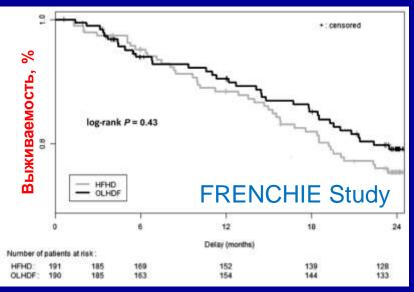
MPO: выживаемость при исходном альбумине <40 г/л и > 40 г/л

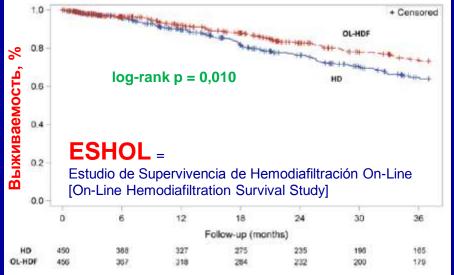



$$n = 493$$

$$n = 154$$

Результаты 4 крупнейших РКИ по ГДФ




Grooteman M. CONTRAST JASN 2012;23:1087-96

Ok E. Turkish OL-HDF Study. NDT 2013;28:192–202

Morena M. FRENCHIE Study KI 2017:91:1495–1509

Maduell F. **ESHOL** JASN 2013; 24: 487–497

Анализ выживаемости по конвекционным объемам

Cause	Online HDF: BSA-adjusted convection volume (L/session)					
	<19	19-23	>23			
All-causes						
Unadjusted	0.91 (0.74; 1.13)	0.88 (0.72; 1.09)	0.73 (0.59; 0.91)			
Adjusted	0.83 (0.66; 1.03)	0.93 (0.75; 1.16)	0.78 (0.62; 0.98)			
Cardiovascular						
Unadjusted	1.00 (0.71; 1.40)	0.71 (0.50; 1.01)	0.69 (0.48; 0.98)			
Adjusted	0.92 (0.65; 1.30)	0.71 (0.49; 1.03)	0.69 (0.47; 1.00)			
Infections						
Unadjusted	1.50 (0.93; 2.41)	0.96 (0.56; 1.65)	0.56 (0.30; 1.08)			
Adjusted	1.50 (0.92; 2.46)	0.97 (0.54; 1.74)	0.62 (0.32; 1.19)			
Sudden death			1 3 - 3 - 1 1 1 1			
Unadjusted	1.24 (0.80; 1.91)	0.91 (0.57; 1.47)	0.60 (0.35; 1.03)			
Adjusted	1.09 (0.69; 1.74)	1.04 (0.63; 1.70)	0.69 (0.39; 1.20)			

Values are HRs and 95% CI.

Adjusted for age, sex, albumin, creatinine, history of cardiovascular diseases and history of diabetes.

Original Article

Mortality reduction by post-dilution online-haemodiafiltration: a cause-specific analysis

Menso J. Nubé¹, Sanne A.E. Peters^{2,3}, Peter J. Blankestijn⁴, Bernard Canaud^{5,6}, Andrew Davenport⁷, Muriel P.C. Grooteman¹, Gulay Asci⁸, Francesco Locatelli⁹, Francisco Maduelli¹⁰, Marion Morena^{6,11}, Ercan Ok⁸, Ferran Torres^{12,13} and Michiel L. Bots³ on behalf of the HDF Pooling Project investigators

Table 2. Absolute number of deaths in the HD and ol-HDF groups and differences between groups; HR with 95% CI in the complete HDF cohort and in thirds of the convection volume

	All	HD	HDF	HD-HDF	Ol-HDF: BSA-adjusted convection volume (L per session)			
					Mean 22	<19	19-23	>23
All-causes**	769	410	359	51	0.86 (0.75; 0.99)	0.83 (0.66; 1.03)	0.93 (0.75; 1.16)	0.78 (0.62; 0.98)
All CVD***	292	164	128	36	0.77 (0.61; 0.97)	0.92 (0.65; 1.30)	0.71 (0.49; 1.03)	0.69 (0.47; 1.00)
Cardiac**	135	81	54	27	0.64 (0.45; 0.90)	0.95 65; 1.39	og (0. 1.04)	0.70 (0.47; 1.05)
Non-cardiac*	80	42	38	4	0.92 (0.60; 1.43)	0.64 0. 5; 1.55	22 (0.67; 2.23)	0.86 (0.47 (178)
Unclassified**	77	41	36	5	0.90 (0.58; 1.42)	0.82 0.2. 1.50	1.20 (2.20)	0 85 ().4 (1.55)
INFECTIONS*	150	77	73	4	0.94 (0.68; 1.30)	1.50 0.92; 1 (6	1.97 (0.54 1.74)	0.6 (1.32; 1.15
SUDDEN death**	112	56	56	0	0.99 (0.68; 1.43)	1.09 0.69; 1.	1(0 (1.70)	0.69 (0.39,
OTHER causes*	215	113	102	9	0.88 (0.68; 1.13)	0.67 (0.45; 1.01)	1.13 (0.77; 1,67)	0.87 (0.59; 1.30)
CVD including sudden death**	404	220	184	36	0.81 (0.65;1.00)	0.93 (0.66;1.30)	0.82 (0.59;1.14)	0.72 (0.51;1.00)

The HD group is used as reference.

BSA, body surface area.

Cardiac CVD includes: MI, AR and congestion; non-cardiac CVD includes: stroke, peripheral arterial disease; unclassified includes: CVD, but without any further specificity. P for trend *NS, **0.02-0.05, ***0.07. Part of this table was published in [15].

Целевые показатели «адекватности» ГДФ

- 24 л/сеанс
- 6 л/час
- 80 мл/кг/час (нормализация по весу)
- 3 000 мл /м²/час (нормализация по BSA)

EUDIAL - European Dialysis Working Group

Can High Convection Volumes be Achieved in Each Patient Official Title: During Online Post-dilution Hemodiafiltration?

Feasibility Study in Preparation of the Convective Transport Study (CONTRAST II)

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

Current Primary Outcome Measures ICMJE

Percentage of patients with a convection volume of at least 22 liters per treatment [Time Frame: At the end of the step-up protocol (within 6 weeks from the start of the study)] [Designated as safety issue: No]

(submitted: June 10, 2013)

Current 5 Outcome (submitt

Intervention

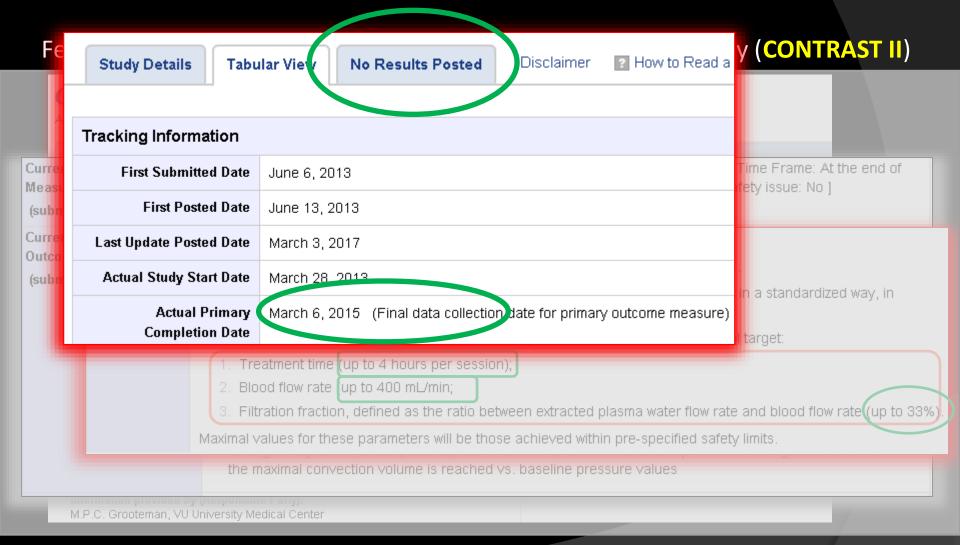
Other: Optimization of HDF key parameters

First, patients actually receiving standard dialysis will be switched to post-dilution HDF.

Then, a stepwise increase in 3 key parameters of the HDF prescription will be applied in a standardized way, in order to obtain the highest achievable convection volume.

Precisely, the following 3 parameters will successively be increased towards a maximal target:

- Treatment time (up to 4 hours per session);
- Blood flow rate up to 400 mL/min;
- Filtration fraction, defined as the ratio between extracted plasma water flow rate and blood flow rate (up to 33%)


Maximal values for these parameters will be those achieved within pre-specified safety limits.

the maximal convection volume is reached vs. baseline pressure values

ion provided by (Responsible Party)

M.P.C. Grooteman, VU University Medical Center

Official Title: Can High Convection Volumes be Achieved in Each Patient During Online Post-dilution Hemodiafiltration?

NDT, 2018, октябрь, приложение 3

From old uraemic toxins to new uraemic toxins: place of 'omics'

Massy ZA

Large uremic toxins: an unsolved problem in ESRD Wolley MJ

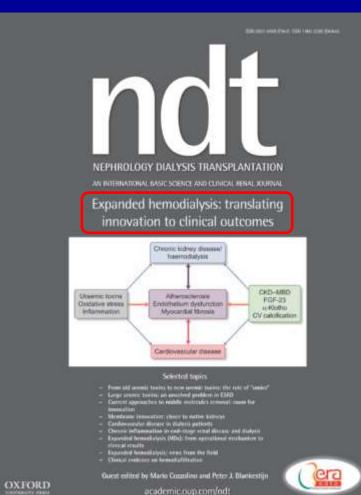
Current approaches to middle molecule removal: room for innovation

Masakane I

Membrane innovation: closer to native kidneys
Storr M

Cardiovascular disease in dialysis patients

Cozzolino M


Chronic inflammation in ESRD and dialysis
Cobo G

Expanded haemodialysis: from operational mechanism to clinical results

Ronco C

Expanded haemodialysis: news from the field Florens N

Clinical evidence on haemodiafiltration Blankestijn PJ

Уремические токсины - 2019

European Uremic Toxin (EUTox) Work Group of the ESAO and endorsed Work Group of the ERA-EDTA

Solutes in database	130		
Solutes by class	67 (51.54%): Water-soluble		
	33 (25.38%): Protein-bound		
	30 (23.08%): Middle molecule		
Protein-bound solutes above/below 500 Dalton	25 (75.76%): Below 500 Dalton		
above, below ede balken	8 (24.24%): Above 500 Dalton		
Total study count	442		
CN study count	172 (1.32 per solute)		
CU study count	270 (2.08 per solute)		
Pathological associations count	75 (0.58 per solute)		
Pathological associations	31 (41.33%): Cardiovascular		
	13 (17.33%): Nephrologic		
	7 (9.33%); Neurologic and CNS		
	5 (6.67%): Oncologic		
	4 (5.33%): Immunologic		

Name		β-2-Microglobulin			
Molecular we	eight	11818			
Group		Peptide			
Class		Middle molecule			
Added		16.09.2009			
Reference		Pubmed: 12675874			
Submitted b	y	Vanholder			
Reviewed by Abou Deif					
NORMAL CONCENTRATIONS (CN)					
Date	Mean (+/-SD) (low	Range - high Range)			
03.01.2007	1.17 (+/-0.40) mg/ (1.10-2.40) mg/L 1.90 (+/-0.60) mg/				
Grand mean	1.50 (+/-0.50) (1.1	10-2.40) mg/L			
ANOVA	F(1,45) = 24.87, p	=0.00: Significant differer			
Dispersion	L:1.10, M:1.50, H:2	.40 : A - (Minimal scatter:			

Review

Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update

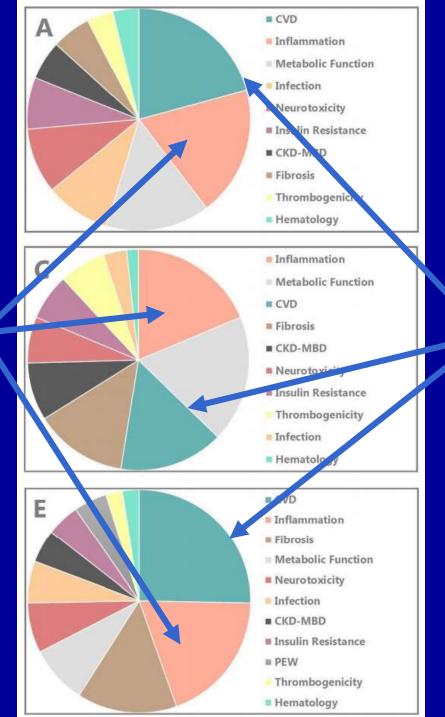
Raymond Vanholder *, Anneleen Pletinck, Eva Schepers O and Griet Glorieux

Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium; anneleen.pletinck@ugent.be (A.P.); eva.schepers@ugent.be (E.S.); griet.glorieux@ugent.be (G.G.)

* Correspondence: Raymond.Vanholder@UGent.be; Tel.:+32-9-226-14-61

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Small Wat Compounds	er-Soluble	Protein Bound Compounds	Middle Molecules
Guanidine compounds	d .	AGEs	Adrenomedullin
-Guanidinosuccinic	acid	AOPPs	Adiponectin
-Methylguanidine		CMPF	Angiogenin
-Guanidine		Cresols	Atrial natriuretic peptide
-Creatine		-P-cresyl sulfate	β ₂ -microglobulin
-Guanidino acetic ac	id	-P-cresyl glucuronide	β-endorphin
-γ-Guanidino butyri	c acid	Hippurates	β-lipotropin
-ADMA		-Hippuric acid	Cholecystokinin
-SDMA		-P-hydroxy hippuric acid	Complement factor D
Oxalate		-O-hydroxy hippuric acid	Complement factor Ba
Phenylacetylglutamate		Homocysteine	Cystatin C
Methylamines		Indoles	Interleukin-1β
-(Mono)methylamin	e	-Indoxyl sulfate	Interleukin-18
-Dimethylamine		-Indoxyl glucuronide	Interleukin-6
-Trimethylamine		-Kynurenine	Tumor Necrosis Factor-α
-Trimethylamine-N-	Oxide	-Kynurenic acid	Interleukin-8
Sulfuric compounds		Phenols	Interleukin-10
-Lanthionine		-Phenyl sulfate	Endothelin
Myoinositol		-Phenyl acetic acid	FGF-23
2PY		Quinolinic acid	Ghrelin
Polyamines			Glomerulopressin
-Acrolein			Immunoglobulin light chai
-Putrescine		16	Lipids and lipoproteins
-Spermine		. •	Leptin
-Spermidine			MCSF
Urea			Methionine-enkephalin
Carbamylated compour	nds		Neuropeptide Y
Cyanate			Orexin A
Ammonia			Parathyroid hormone
Uric acid			Pentraxin-3
Xanthine			Peptide YY
Hypoxanthine			Prolactin
, poxumume			Resistin
2	8		Retinol Binding Protein
/	O		Visfatin 3
			Visiaiii /


Vanholder R et al. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel). 2018;10(1). pii: E33.

doi: 10.3390/toxins10010033.

Число токсинов, влияющих на систему

хроническое воспаление

малые водорастворимые

связанные с белками

сердечнососудистые осложнения

среднемолекулярные

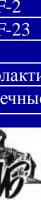
ΦΗΟ-α					
белки					
растворимый рецептор ФНО -1 и -2 17-30		ограничивает активность ΦΗΟ-α	3-10		
пентраксин-3	40	активация комплемента, активность макрофагов	2-7		
YKL-40 (CHI3L1)	40	локальный воспалительный ответ	2-5		
β-следовой протеин	26	активирует простаноиды	>35		
фактор комплемента D	24	альтернативный путь	4-17		
		адипокины			
адипонектин	30	регуляция глюкозы и окисления жирных кислот	2-3		
висфатин (NAMPT)	52	ангиогенез и пролиферация эндотелия	3-6		
лептин 16		регуляция аппетита и запасов энергии	3-4		
		факторы роста			
сосудистый эндотелиальный фактор	34	пролиферация эндотелия, миграция и	2		
роста (VEGF)		дифференциация			
FGF-2	18	ангиогенез	5-20		
FGF-23	32	обмен фосфатов	>200		
гормоны и другие					
пролактин	23	разнообразная	2-4		
конечные продукты гликирования	<1-70	неизвестна	2-20		
Румянцев А.Ш. Инновации в гемодиализе. Нефрология и диализ. 2019(2): 199-212					

цитокины

провоспалительная

биологическая роль в физиологических условиях

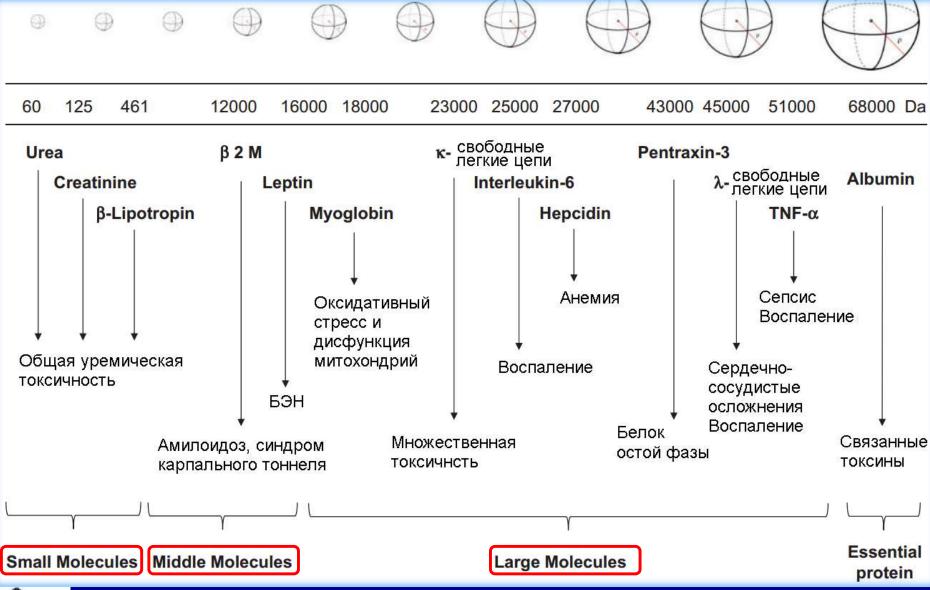
кратность


2-5

повышения при ХПН

MB,

кДа


18-28

молекула

интерлейкины IL-18, IL-6, IL-1β,

Уремические токсины сегодня

Мочевина или...

«мочевина – нетоксичный продукт»

Johnson et al.(1972) Effects of urea loading in patients with far-advanced renal failure. Mayo Clin. Proc.47, 21–29

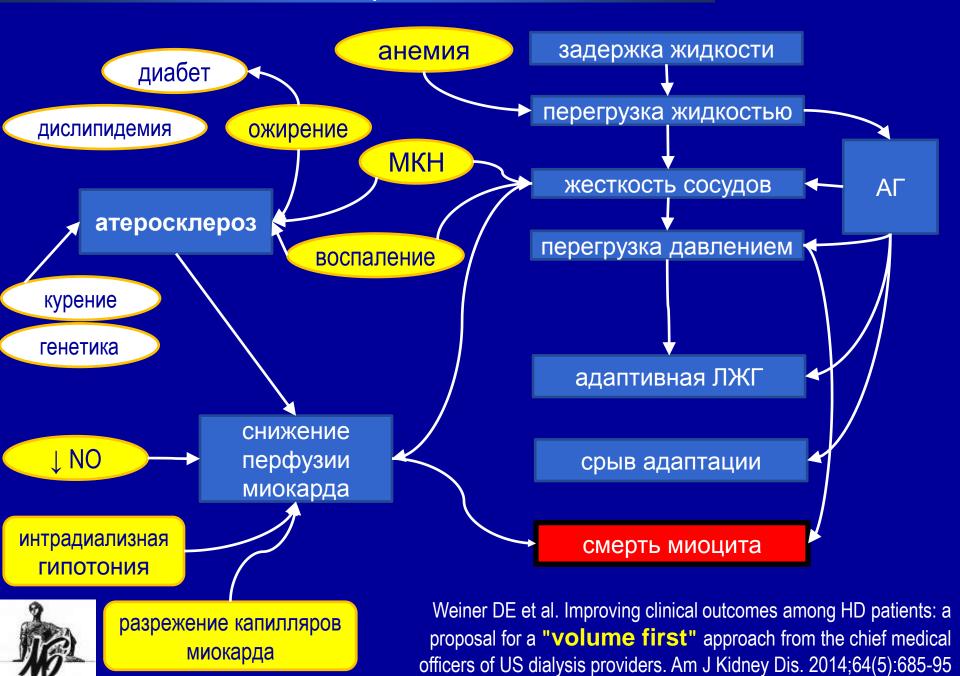
введение в диализирующий раствор мочевины (острый эксперимент у 3 диализных пациентов)

50 ммоль/л в крови – «нетоксично»

60 ммоль/л – «легкая сонливость»

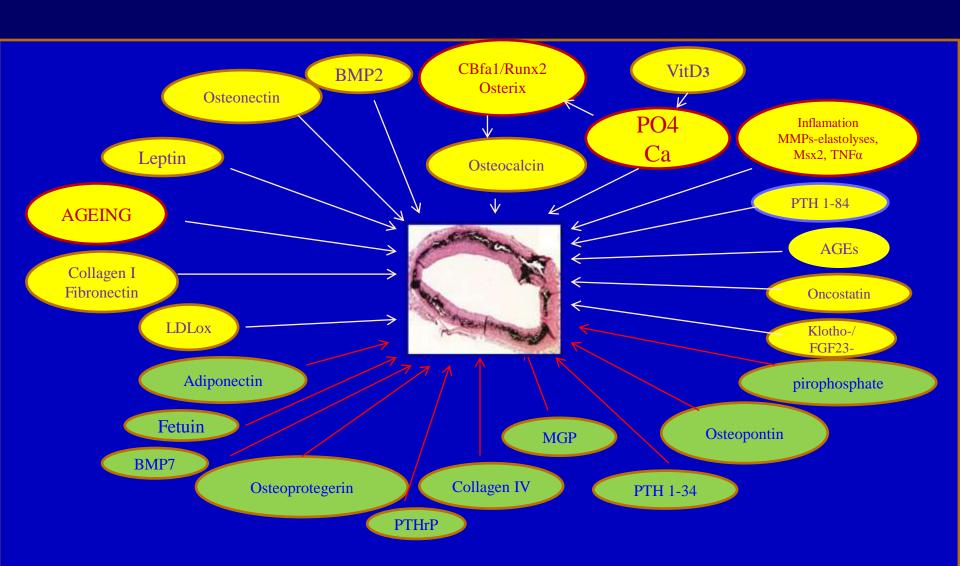
100 ммоль/л – «умеренная симптоматика»

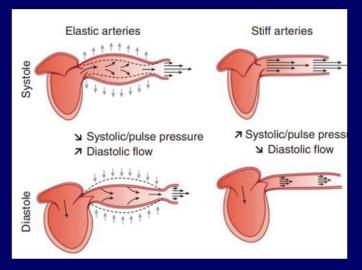
Карбамилирование

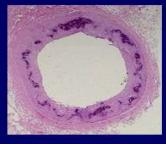


Johnson et al.(1972) Effects of urea loading in patients with far-advanced renal failure. Mayo Clin. Proc.47, 21–29

- нарушение кишечного эпителиального барьера с проникновением бактериальных токсинов в кровь
- карбамилирование белков с нарушением их структуры и функции
- карбамилирование липидов низкой плотности и прогрессирование атеросклероза
- почечный фиброз из-за карбамилирования альбумина
- анемия из-за карбамилирования ЭПО


Патогенез диализной кардиопатии 2014


Патогенез диализной кардиопатии 2020

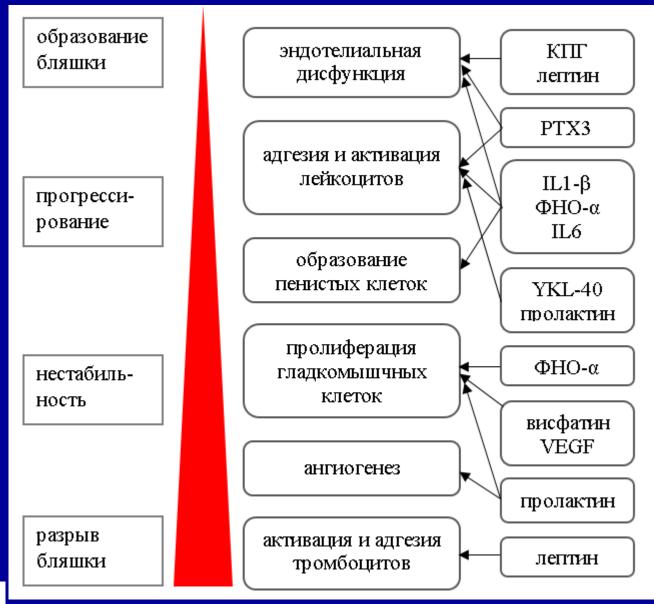


Индукторы (+) и ингибиторы (-) сосудистой кальцификации

утрата способности резистивных сосудов обеспечивать поддержание кровообращения в диастолу

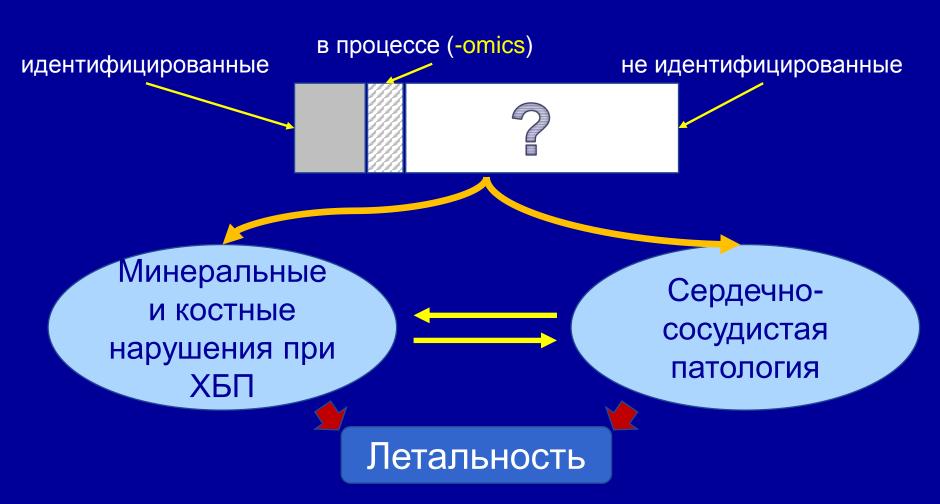
1.3 1.2 1.2 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.4 1.5 25 35 45 55 65 75 85 Age (years) ESRD patients © Control population

кальцификация медии


Briet M et al. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012;82(4):388-400

кальцифилаксия

(кальцифицирующая артериолопатия)



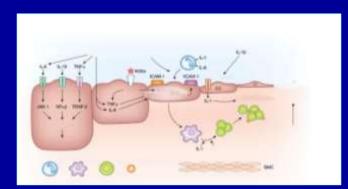
Уремические токсины в атерогенезе

Роль идентифицированных и ещё не идентифицированных токсинов

Механизмы уремической токсичности: акцент на сердечно-сосудистую патологию

- подавление нормальной активности лейкоцитов и снижение противоинфекционной защиты
- активация про-оксидантной активности лейкоцитов во взаимодействии лейкоцитыэндотелий
- взаимодействие конечных продуктов гликирования (AGEs) с их рецепторами в тканях

- активация микровоспаления и прогрессирование атеросклероза
- инфильтрация макрофагов и моноцитов в зоны атеросклеротического поражения
- эндотелиальная дисфункция и жёсткость сосудов



Уремические токсины: патологическое влияние крупных средних молекул (>15 кДа)

Wolley M et al. Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules

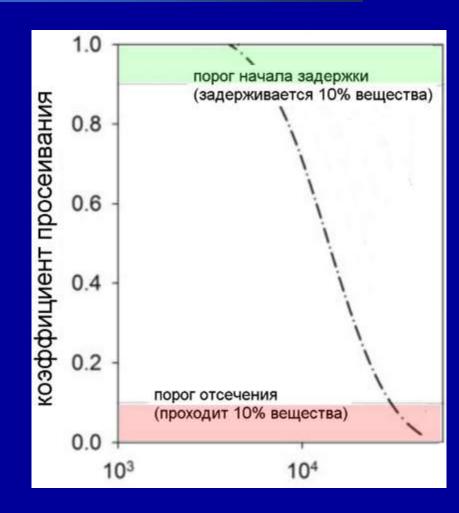
Clin J Am Soc Nephrol. 2018; 13(5): 805-814.

- Атеросклеротические сердечно-сосудистые заболевания:
 ИЛ-1b, ФНО, РТХ3, ИЛ-18, пролактин, АGE, висфатин, бета-следовой белок, ИЛ-6
- Структурное поражение сердца: FGF-2, FGF23

Kato S et al. **Aspects of immune dysfunction in end-stage renal disease.** Clin J Am Soc Nephrol. 2008 Sep;3(5):1526-33.

Иммунодефицит:
 Легкие цепи Ig, RBP4, FGF-23, а1-кислый гликопротеин

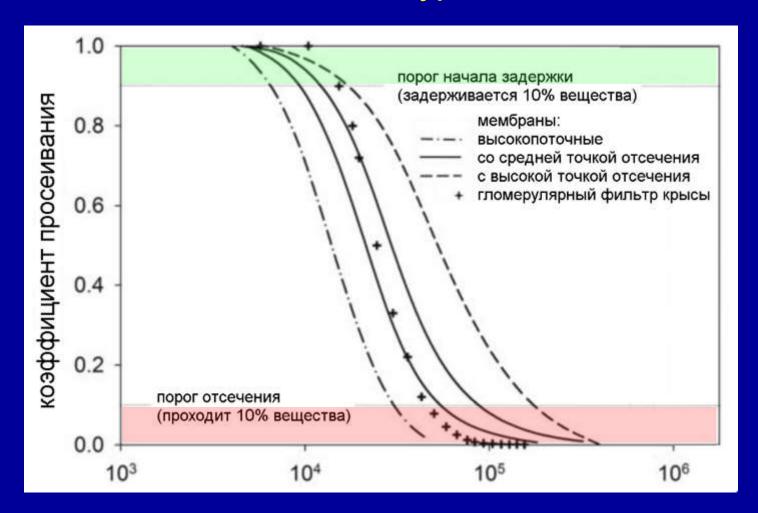
Stenvinkel P et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure.


Kidney Int. 1999;55(5):1899-911.

Белково-энергетическая недостаточность: ИЛ-1b, ФНО, ИЛ-6

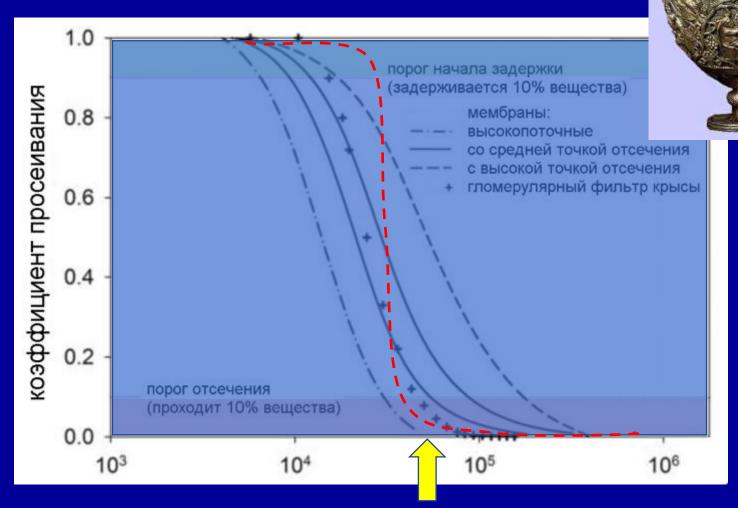
определения по Ronco C.

- retention onset (RO) «порог задержки», когда для растворенных веществ, начиная с определенного МВ коэффициент просеивания падает ниже 0,9 и
- cutoff (CO) «точка отсечения», когда для растворенных веществ, начиная с определенного МВ коэффициент просеивания падает ниже 0,1.

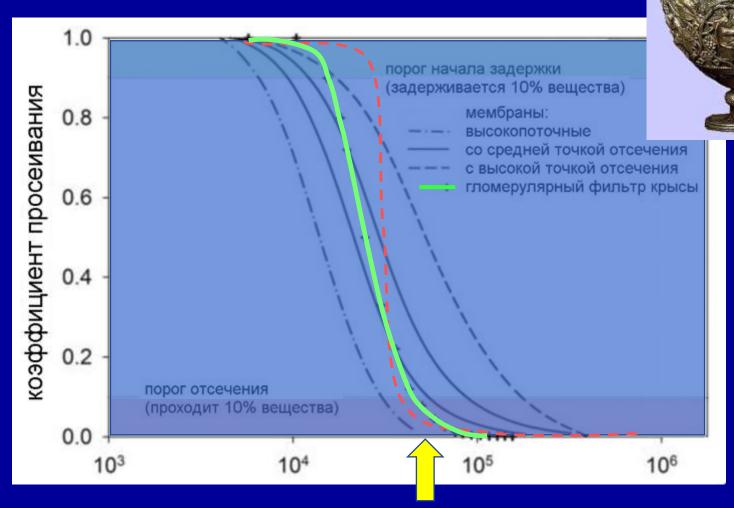


Современная классификация мембран (одна из...)

Категория	КУФ (мл/час)/	β_2 -микроглобулин		Альбумин		
	/ммНg/м²)	клиренс	коэф.	потери за	коэф.	
		(мл/мин)	просеи-	сеанс (г)	просеивания	
			вания			
низкопоточные	<12	<10	-	0	0	
высокопоточные	14-40	20-80	<0,7-0,8	<0,5	<0,01	
со средней точкой отсечения	40-60	>80	0,99	2-4	<0,01	
белок-теряющие	>40	>80	0,9- 1,0	2-6	0,01-0,03	
с высокой точкой отсечения	40-60		1,0	9-23	<0,2	

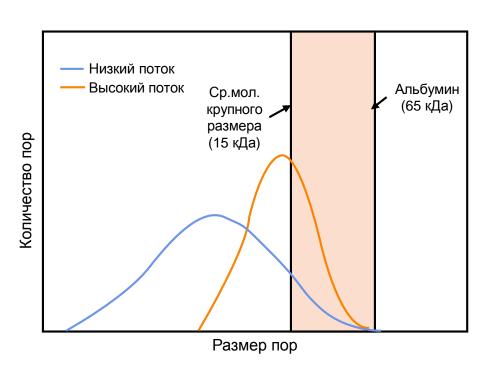


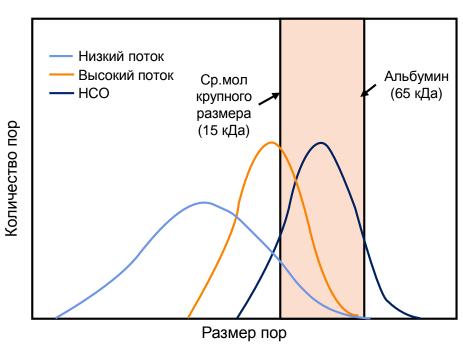
Коэффициенты просеивания мембран: диализных и натуральных



Святой Грааль разработчиков мембран

Святой Грааль разработчиков мембран

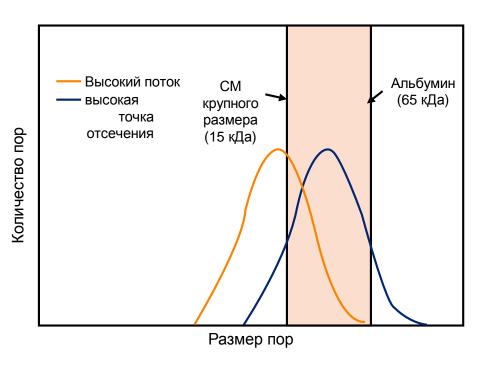


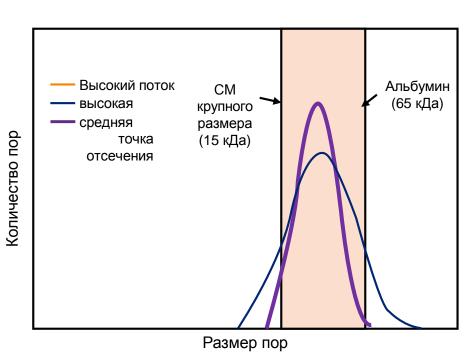

Альбумин, 68 кДа

Распределение размеров пор:

низкопоточный... высокопоточный...

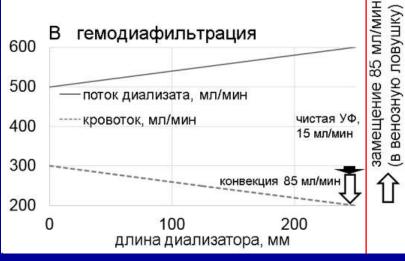
высокая точка отсечения (HighCutOff)...

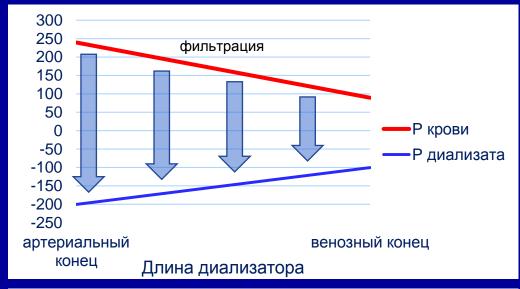


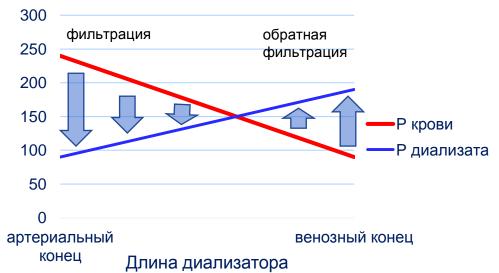

Распределение размеров пор:

низкопоточный...

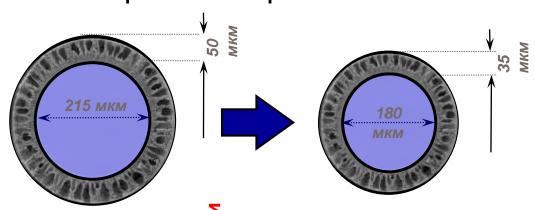
высокая точка отсечения...


средняя точка отсечения

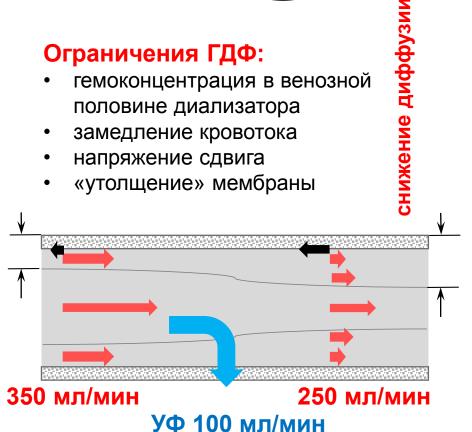

потоки в диализаторе и конвекционный объем



Обратная фильтрация


низко-поточный диализатор

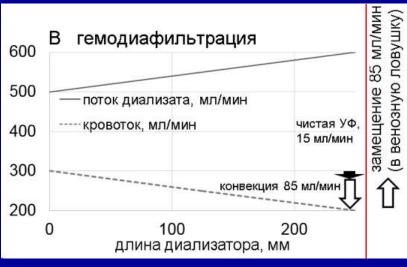
высоко-поточный диализатор

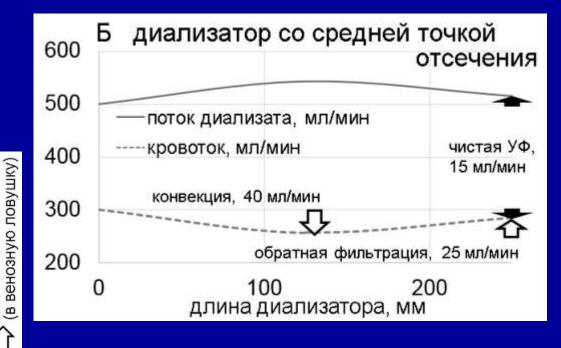


Изменение геометрии мембран

Ограничения ГДФ:

- гемоконцентрация в венозной половине диализатора
- замедление кровотока
- напряжение сдвига
- «утолщение» мембраны




Решения в HDx:

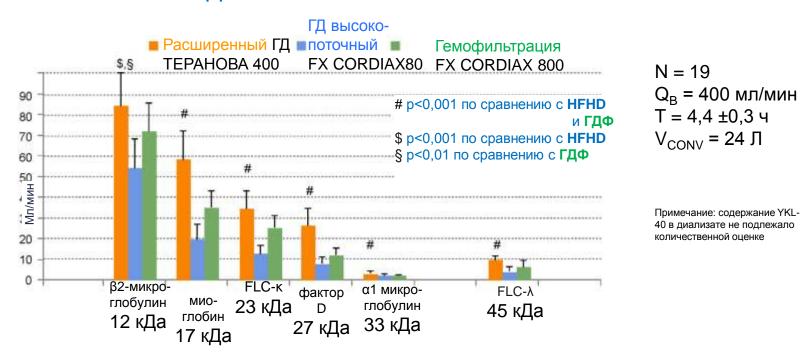
- меньшая толщина мембраны
 - увеличение диффузии
 - увеличение линейной скорости кровотока
- меньший внутренний диаметр
 - снижение напряжения сдвига и толщины пограничного слоя
 - увеличение градиента давления по длине диализатора

потоки в диализаторе и конвекционный объем

Потери альбумина за сеанс

	FX CorDiax 60	FX 60
выведение β ₂ -МГ (г/сеанс)	$0,26 \pm 0,09$	$0,24 \pm 0,09$
выведение миоглобина (мг/сеанс)	1,83 ± 0,89	1,51 ± 0,76
потери альбумина (г/сеанс)	4,25 ± 3.49	3,01 ± 2,37

	THERANOVA 400 QB 300 мл/мин	ГД/THERANOVA 400 QB 400 мл/мин
Среднее ± SD	$2,7 \pm 0,7$	$3,0 \pm 0,7$
Медиана	2,9	3,2
Диапазон	1,5 – 3,9	1,2 – 3,9


Maduell F. Elimination of large uremic toxins by a dialyzer specifically designed for high-volume convective therapies. Blood Purif. 2014;37(2):125-30.

Kirsch et al. and Krieter et al. Abstracts to ERA-EDTA 2016: SP416 and MP464

Расширенный гемодиализ с использованием мембраны МСО – первый клинический опыт

Клиренс средних молекул по сравнению с высокопоточным ГД и высокообъемной ГДФ

FLC – свободные легкие цепи

When? Why? Level of proof

Где ГДФ невозможна или дорога

Сложность в достижении целевых объемов замещения

Логистические причины (одноигольный диализ, плохой доступ, проблемы с петлей раздачи воды)

НDх может иметь равную с ГДФ эффективность по удалению средних молекул

Нет подтверждения. Реальные преимущества неизвестны,

Анализ первого клинического опыта

news from the field новости с полей (Франции)

Зуд или синдром беспокойных ног

После неудачи с другими мерами

После тщательного исключения вторичных причин HDх мог бы улучить выведение крупных уремических токсинов (свободные легкие цепи, миоглобин)

Нет подтверждения. Описания серий случаев. Реальные преимущества неизвестны

When?

Why?

Level of proof

Астения или долгое восстановление после сеанса

При неудовлетворенности пациентов лечением Лучшая биосовместимость -? Роль крупных токсинов - ? Нет подтверждения. Описания серий случаев. Реальные преимущества неизвестны

Исходы сердечно-сосудистые и после трансплантации

Не определено

лучшее выведение крупных уремических токсинов Нет подтверждения. Реальные преимущества неизвестны,

Florens N et al. Expanded haemodialysis: news from the field. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii48-iii52.

Самостоятельно проводимый диализ

Si onp

Ca

определено

НDх мог бы улучить выведение крупных уремических токсинов (свободные легкие цепи, миоглобин)

Нет подтверждения. Описания серий случаев. Реальные преимущества неизвестны

When? Why? Level of proof

Где ГДФ невозможна или дорога

Сложность в достижении целевых объемов замещения

Логистические причины (одноигольный диализ, плохой доступ, проблемы с петлей раздачи воды)

HDx может иметь равную с ГДФ эффективность по удалению средних молекул

Нет подтверждения. Реальные преимущества неизвестны,

Зуд или синдром беспокойных ног

После неудачи с другими мерами

После тщательного исключения вторичных причин HDx мог бы улучить выведение крупных уремических **ТОКСИНОВ** (свободные легкие цепи, миоглобин)

Нет подтверждения. Описания серий случаев. Реальные преимущества неизвестны

Астения или долгое восстановление после сеанса

При неудовлетворенности пациентов лечением

Лучшая биосовместимость -? Роль крупных токсинов - ?

Нет подт⊾е ждения. Описания серий случаев. Реальные преимущества неизвестны

Florens N et al. Expanded na modialysis: news from the field. Nephrol Dian Transplant. 2018 Oct 1;33(suppl_3):iii48-(i5).

Self-ca Whene

Анализ первого клинического опыта

news from the field новости с полей (Франции)

OBAHNA Why?

Level of proof

Исходы сердечно-сосудистые и после трансплантации

He определено

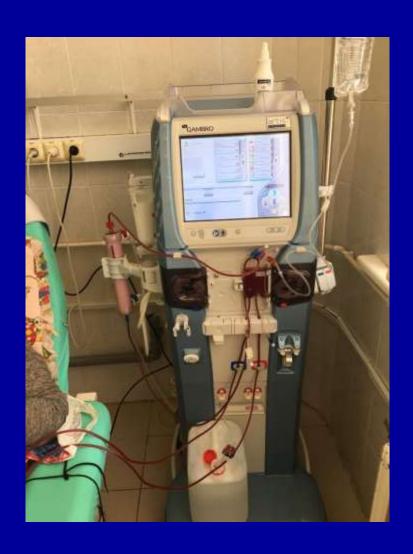
определено

He

лучшее выведение крупных уремических **ТОКСИНОВ**

Нет подтверждения. Реальные преимущества неизвестны,

Самостоятельно проводимый диализ


cally ar

HDх мог бы улучить выведение крупных уремических

ТОКСИНОВ (свободные легкие цепи, миоглобин)

Нет подтверждения. Описания серий случаев. Реальные преимущества неизвестны

СПб, Городская Мариинская больница

XIV Общероссийская научно-практическая конференция РДО и XIX Международная школа-семинар по нефрологии (СМЕ)

Дни нефрологии в Санкт-Петербурге

Предварительная программа конференции

16:00-16:25	ОПП при миеломе: возможности расширенного
	гемодиализа
	Вишневский К.А., Санкт-Петербург
16:25-16:30	вопросы и ответы

Санкт-Петербург, <u>Конгрессный</u> центр «<u>ПетроКонгресс</u>», ул. <u>Лодейнопольская</u>, 5

29 - 31 мая 2020

Comparison of the removal of uraemic toxins with medium cut-off and high-flux dialysers: a randomized clinical trial

Dialyser	Membrane polymer	Membrane type	Fiber length (mm)	Fiber inner diameter (μm)	Membrane area (m²)	Membrane wall thickness (µm)	Ultrafiltration coefficient (mL/h/mmHg)	Sterilization
Theranova 500 TM	PAES/PVP	MCO	236	180	2	35	59	Steam
Elisio 21H TM	Polynephron/PES	HF	290	200	2.1	40	82	Dry Gamma

PAES/PVP, polyarylethersulfone/polyvinylpyrrolidone; PES, polyethersulfone.

40 пациентов 3 месяца

Belmouaz M, Bauwens M, Hauet T et al. Comparison of the removal of uraemic toxins with medium cut-off and high-flux dialysers: a randomized clinical trial. Nephrol Dial Transplant. 2020 Feb 1; 35(2):328-335.

doi: 10.1093/ndt/gfz189.

	*		S 54775
	HF-HD	MCO-HD	P-value
Urea RR (%)	74 ± 6	71 ± 18	0.34
Creatinine RR (%)	63 ± 12	62 ± 16	0.73
Phosphate RR (%)	53 ± 22	55 ± 16	0.67
spKt/V	1.61 ± 0.27	1.58 ± 0.46	0.70
eKt/V	1.59 ± 0.27	1.56 ± 0.46	0.70
Beta2-microglobulin			
(11.8 kDa)			
Pre-dialysis (mg/L)	28.4 ± 5.6	26.9 ± 5.12	0.0104
Post-dialysis (mg/L)	10.5 ± 3.1	8.4 ± 5.2	0.0123
RR (%)	68 ± 6	73 ± 15	0.0487
Myoglobin (17 kDa)			
Pre-dialysis (µg/L)	173 (144-203)	158 (133-216)	0.5792
Post-dialysis (µg/L)	126 (102-146)	76 (65-94)	< 0.0001
RR (%)	36 ± 8	57 ± 13	< 0.0001
Prolactin (23 kDa)			
Pre-dialysis (ng/mL)	30.0 ± 19	29.6 ± 17.1	0.69
Post-dialysis (ng/mL)	22.7 ± 14.9	13.1 ± 6.4	< 0.0001
RR (%)	32 ± 13	59 ± 11	< 0.0001
Kappa FLC (22 kDa)			
Pre-dialysis (mg/L)	145 (104-203)	129 (109-190)	0.0303
Post-dialysis (mg/L)	81 (45-120)	48 (28-64)	< 0.0001
RR (%)	54 (48-58)	70 (63-74)	< 0.0001
Lambda FLC (45 kDa)			
Pre-dialysis (mg/L)	106 (77-132)	89 (62-125)	0.0021
Post-dialysis (mg/L)	98 (74-119)	59 (37-83)	< 0.0001
RR (%)	15 (9-22)	44 (38-49)	< 0.0001

Comparison of the removal of uraemic toxins with medium cut-off and high-flux dialysers: a randomized clinical trial

	HF-HD	MCO-HD	P-value
Leucocytes (×10 ⁹ /L)	6.4 ± 1.9	6.6 ± 1.7	0.52
Hb (g/dL) a	11.1 ± 1.2	11.1 ± 1.5	0.86
Haematocrit (%)a	35.4 ± 3.8	36.8 ± 9.8	0.38
Platelets (×109/L)	188 ± 55	189 ± 70	0.83
Reticulocytes (×10 ¹² /L) ^a	0.06 ± 0.03	0.06 ± 0.03	0.96
Urea (mmol/L)	18 ± 6	17 ± 6	0.54
Creatinine (µmol/L)	628 (476-754)	645 (525-751)	0.25
Protein (g/L)	66 ± 6	65 ± 5	0.18
Albumin (g/L)			
Pre-dialysis	38.2 ± 4.1	36.9 ± 4.3	0.0049
Post-dialysis	42.3 ± 5.8	40.0 ± 5.3	0.0040
RR (%)	-10 (-15 to -4)	-7 (-13 to -2)	0.24
Transthyretin (g/L)b	0.32 ± 0.09	0.31 ± 0.09	0.7
nPCR	0.96 ± 0.28	0.91 ± 0.33	0.2
Bicarbonate (mmol/L)	21.9 ± 2.1	21.7 ± 1.9	0.57
CRP (mg/L) ^c	9 (4-19)	9 (4-28)	0.15

	HF-HD	MCO-HD	P-value
IL-1β			
Pre-dialysis (pg/mL)	5.4 (3.0-7.4)	5.2 (4.4-7.2)	0.32
Post-dialysis (pg/mL)	5.3 (4.7-7.1)	5.2 (4.4-7.0)	0.43
RR (%)	6 (-2 to 18)	8 (-2 to 17)	0.46
IL-6			
Pre-dialysis (pg/mL)	9.4 (6.6-25.7)	9.6 (6.1-29.0)	0.31
Post-dialysis (pg/mL)	10.6 (6.9-29.8)	10.2 (6.5-33.7)	0.33
RR (%)	11 (-5 to 21)	9 (-3 to 22)	0.68
TNF-α			
Pre-dialysis (pg/mL)	14.6 (11.3-19.5)	12.9 (9.6-15.3)	0.36
Post-dialysis (pg/mL)	12.2 (8.8-16.9)	10.4 (7.6-17.4)	0.13
RR (%)	26 (17-35)	37 (17-44)	0.31
Ox-LDL			
Pre-dialysis (pg/mL)	6.9 ± 4.4	5.5 ± 2.5	0.0483
Post-dialysis (pg/mL)	6.0 ± 2.5	6.5 ± 4.7	0.56
RR (%)	9 (-11 to 22)	7 (-15 to 20)	0.43
SOD activity			
Pre-dialysis (U/mL)	15 ± 10.6	13.5 ± 7.3	0.19
Post-dialysis (U/mL)	16 ± 8.8	13.0 ± 6.7	0.0018
RR (%)	8 (-9 to 20)	22 (-2 to 33)	0.13
Homocysteine			
Pre-dialysis (µmol/L)	30.7 ± 13.6	28.6 ± 13.4	0.13
Post-dialysis (µmol/L)	19.8 ± 8.5	17.5 ± 8.3	0.0259
RR (%)	43 ± 7	46 ± 9	0.0367

Trade-off наших ресурсов сегодня

•	своевременный старт диализа	- !!
•	диализный доступ	- !!
•	возможность выбора метода лечения	- !!
•	снижение рисков внезапной смерти	1
•	снижение рисков сосудистой кальцификации	!
•	нормализация АД (междиализного, в т.ч.)	!!
•	достижение эуволемии	!!
•	уменьшение гиперфосфатемии	!!
•	стремление к целевым значениям ПТГ	+/-
•	обеспечение целевых значений Hb	+/-
•	обеспечение целевых значений дозы диализа	+/-
•	гемодиафильтрация	+/-
•	чистота диализа / хр.воспаление	- !!
•	частота диализа / длительность сеанса	!!
•	коррекция КОС	!

Trade-off наших ресурсов сегодня

•	своевременный старт диализа	- !!
•	диализный доступ	!!
•	возможность выбора метода лечения	!!
•	снижение рисков внезапной смерти	- 1
•	снижение рисков сосудистой кальцификации	- 1
•	нормализация АД (междиализного, в т.ч.)	!!
•	достижение эуволемии	!!
•	уменьшение гиперфосфатемии	!!
•	стремление к целевым значениям ПТГ	+/-
•	обеспечение целевых значений Hb	+/-
•	обеспечение целевых значений дозы диализа	+/-
•	гемодиафильтрация	+/-
•	чистота диализа / хр.воспаление	- !!
•	частота диализа / длительность сеанса	- !!
•	коррекция КОС	1
•	расширенный диализ	?

Group 4: Optimal Dialysis Adequacy and Symptom Control

- 1. Как следует определять адекватность диализа по следующим параметрам?
 - а) Биохимические индексы
 - b) Водный статус
 - с) Контроль симптомов
 - d) Нутриционный статус
 - е) Новые физиологические индексы (например, исключение субклинических гемодинамических нарушений)

«Новые» физиологические индексы

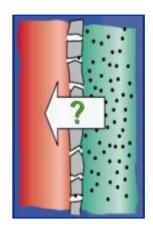
- гипертрофия левого желудочка
- толщина интимы-медии каротидной артерии
- вариабельность ритма
- частота эпизодов желудочковой аритмии

Perl J et al. The Use of a Multidimensional Measure of Dialysis Adequacy – Moving beyond Small Solute Kinetics. Clin JASN. 2017;12(5):839-847.

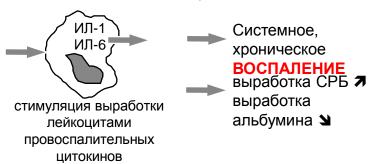
- нарушение функции продольных волокон при сохраненной фракции выброса
- диастолическая дисфункция ЛЖ
- миокардиальный фиброз
- нарушение функции правого желудочка
- трактовка ↑ биомаркеров (в т.ч., тропонина)

What did he say?

- Интенсификация сеанса диализа, возможно, достигла предела в части улучшения важных исходов
 - поиск путей эффективного выведения уремических токсинов большей массы
- HDx технология, успешно конкурирующая с ГДФ «по цене» обычного ГД
 - внутренняя фильтрация
 - снятия рисков гемоконцентрации (тромбирование, снижение диффузии)
- Внимание на интересы пациента и подтверждение эффективности и безопасности
 - требуются исследования

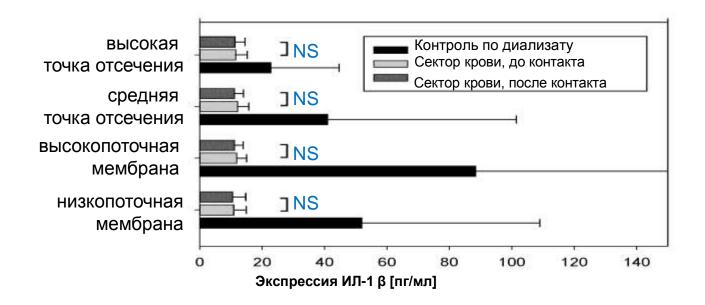


back-up


Дают ли мембраны со средней точкой отсечения более высокий риск поступления бактериальных веществ из диализата в кровь?

Диализный раствор содержит эндотоксины и другие продукты бактериального происхождения (индуцирующие секрецию цитокинов вещества)

Обратный перенос примесей диализата может вызвать


- пирогенные реакции (лихорадка)
- высвобождение медиаторов воспаления

Подвержены ли пациенты, у которых используются мембраны МСО, более высокому риску?

Оценка удерживания эндотоксина в модели диализной терапии

Экспрессия ИЛ-1β [пг/мл] в анализе индукции клеточной линией ТНР-1

 По данным анализа на клеточной линии THP-1 индукция ИЛ-1β не наблюдалась ни в одном из образцов из сектра крови по сравнению с чистой культуральной средой

Schepers E et al. Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up. BMC Nephrol. 2018;19(1):1.